- 人工神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)關(guān)系 內(nèi)容精選 換一換
-
1/Pi1實(shí)例,滿(mǎn)足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 G系列G3/G1提供多種顯存,滿(mǎn)足圖形圖像場(chǎng)景。P系列提供P2v/P1/Pi1實(shí)例,滿(mǎn)足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、來(lái)自:專(zhuān)題P系列:計(jì)算加速型或推理加速型 彈性云服務(wù)器 ,適合于深度學(xué)習(xí)、科學(xué)計(jì)算、CAE等。 GPU云服務(wù)器 的應(yīng)用場(chǎng)景 人工智能 科學(xué)計(jì)算 圖形工作站 人工智能 人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可在短時(shí)間內(nèi)完成海量計(jì)算;Pi1來(lái)自:專(zhuān)題
- 人工神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)關(guān)系 相關(guān)內(nèi)容
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 零門(mén)檻入門(mén)數(shù)據(jù)庫(kù)學(xué)習(xí)之關(guān)系型數(shù)據(jù)庫(kù)架構(gòu) 零門(mén)檻入門(mén)數(shù)據(jù)庫(kù)學(xué)習(xí)之關(guān)系型數(shù)據(jù)庫(kù)架構(gòu) 時(shí)間:2021-01-11 09:37:48 關(guān)系型數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù) 早期在數(shù)據(jù)量還不是很大的時(shí)候,數(shù)據(jù)庫(kù)就采用一種很簡(jiǎn)單的單機(jī)服務(wù),在一臺(tái)專(zhuān)用的服務(wù)器上安裝數(shù)據(jù)庫(kù)軟件,對(duì)外提供數(shù)據(jù)來(lái)自:百科
- 人工神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)關(guān)系 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 子類(lèi)關(guān)系 子類(lèi)關(guān)系 時(shí)間:2021-06-02 13:55:29 數(shù)據(jù)庫(kù) 子類(lèi)關(guān)系(Subtype relationship)是子類(lèi)實(shí)體和所屬父實(shí)體的關(guān)系。 其中,完全子類(lèi)關(guān)系是指所屬父實(shí)體的每個(gè)實(shí)例都能夠與子類(lèi)群的一個(gè)實(shí)體實(shí)例相關(guān)聯(lián)。 不完全子類(lèi)關(guān)系是指所屬父實(shí)體的每個(gè)實(shí)例不一定都與子類(lèi)群相關(guān)聯(lián)。來(lái)自:百科GA CS )能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,CAE等;G系列適合于3D動(dòng)畫(huà)渲染,CAD等 應(yīng)用場(chǎng)景 人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可在短時(shí)間內(nèi)完成海量計(jì)算;Pi1實(shí)例整型計(jì)算來(lái)自:百科分類(lèi)、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過(guò)二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)來(lái)自:百科華為云計(jì)算 云知識(shí) 什么是 視頻標(biāo)簽 什么是視頻標(biāo)簽 時(shí)間:2020-09-15 15:42:21 視頻標(biāo)簽(簡(jiǎn)稱(chēng)VCT),基于深度學(xué)習(xí)對(duì)視頻進(jìn)行場(chǎng)景分類(lèi)、人物識(shí)別、 語(yǔ)音識(shí)別 、文字識(shí)別等多維度分析,形成層次化的分類(lèi)標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽來(lái)自:百科通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線(xiàn)課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線(xiàn)動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線(xiàn)學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線(xiàn)課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線(xiàn)動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線(xiàn)學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 服務(wù)咨詢(xún) 大數(shù)據(jù)分析 人工智能應(yīng)用來(lái)自:專(zhuān)題第5章 特征提取與傳統(tǒng)圖像處理算法 第6章 深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò) 第7章 圖像處理實(shí)驗(yàn) 華為云開(kāi)發(fā)者學(xué)堂 華為官方云計(jì)算技術(shù)培訓(xùn)學(xué)習(xí)平臺(tái),致力于打造精品課程,在線(xiàn)實(shí)驗(yàn),考試及認(rèn)證一站式云計(jì)算技術(shù)人才培訓(xùn)平臺(tái),打造了“學(xué)、練、考、證”一站式學(xué)習(xí)與體驗(yàn)平臺(tái),為用戶(hù)提供架構(gòu)完整、內(nèi)容豐富來(lái)自:百科云知識(shí) 框架管理器離線(xiàn)模型生成介紹 框架管理器離線(xiàn)模型生成介紹 時(shí)間:2020-08-19 17:00:58 離線(xiàn)模型生成以卷積神經(jīng)網(wǎng)絡(luò)為例,在深度學(xué)習(xí)框架下構(gòu)造好相應(yīng)的網(wǎng)絡(luò)模型,并且訓(xùn)練好原始數(shù)據(jù),再通過(guò)離線(xiàn)模型生成器進(jìn)行算子調(diào)度優(yōu)化、權(quán)重?cái)?shù)據(jù)重排和壓縮、內(nèi)存優(yōu)化等,最終生成調(diào)來(lái)自:百科圖像內(nèi)容檢測(cè)和 視頻審核 服務(wù)。 內(nèi)容審核-圖像 圖像 內(nèi)容審核 ,利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中的涉政敏感人物、暴恐元素、涉黃內(nèi)容等,幫助業(yè)務(wù)規(guī)避違規(guī)風(fēng)險(xiǎn)。 內(nèi)容審核-文本 文本內(nèi)容審核 ,采用人工智能文本檢測(cè)技術(shù)有效識(shí)別涉黃、涉政、廣告、辱罵、違禁品和灌水文本內(nèi)容,提供定制化的文本敏感內(nèi)容審核方案。來(lái)自:百科生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)界時(shí)間序列算法模型,并結(jié)合華為供應(yīng)鏈深度優(yōu)化 一鍵式發(fā)布 機(jī)器學(xué)習(xí)、推理平臺(tái)預(yù)集成,算法模型可以一鍵式發(fā)布應(yīng)用,降低二次開(kāi)發(fā)工作 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科通過(guò)本課程的學(xué)習(xí),使學(xué)員了解: 1、如何構(gòu)建高效的神經(jīng)網(wǎng)絡(luò)基礎(chǔ)模型。 2、如何學(xué)習(xí)顯著性物體、邊緣等通用屬性。 3、如何利用通用屬性構(gòu)建弱監(jiān)督學(xué)習(xí)模型,并進(jìn)而利用互聯(lián)網(wǎng)數(shù)據(jù)自主完成知識(shí)學(xué)習(xí)。 課程大綱 第1章 什么是開(kāi)放環(huán)境的自適應(yīng)感知 第2章 面向識(shí)別與理解的神經(jīng)網(wǎng)絡(luò)共性技術(shù) 第3章來(lái)自:百科
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》~人工神經(jīng)網(wǎng)絡(luò)激蕩70年
- 《神經(jīng)網(wǎng)絡(luò)與PyTorch實(shí)戰(zhàn)》——1.2.3 人工神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)
- 動(dòng)手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- 人工智能深度學(xué)習(xí)
- 一文讀懂人工智能、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)的關(guān)系(必看)
- 神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)
- 《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》~人工神經(jīng)網(wǎng)絡(luò)+單層(Perceptron)感知器原理及matlab實(shí)現(xiàn)
- 機(jī)器學(xué)習(xí)、深度學(xué)習(xí)與神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)入門(mén)之神經(jīng)網(wǎng)絡(luò)