- 人工神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí) 內(nèi)容精選 換一換
-
1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 G系列G3/G1提供多種顯存,滿足圖形圖像場(chǎng)景。P系列提供P2v/P1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、來自:專題P系列:計(jì)算加速型或推理加速型 彈性云服務(wù)器 ,適合于深度學(xué)習(xí)、科學(xué)計(jì)算、CAE等。 GPU云服務(wù)器 的應(yīng)用場(chǎng)景 人工智能 科學(xué)計(jì)算 圖形工作站 人工智能 人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可在短時(shí)間內(nèi)完成海量計(jì)算;Pi1來自:專題
- 人工神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí) 相關(guān)內(nèi)容
-
來自:百科時(shí)間:2021-01-08 11:18:54 人工智能 如何提高算子的計(jì)算性能?怎樣修改現(xiàn)有算子的計(jì)算邏輯?昇騰AI軟件棧不支持模型中的算子怎么辦?別急別急,和我一起從單算子開發(fā)學(xué)習(xí)自定義算子開發(fā)吧! 為什么要自定義算子 深度學(xué)習(xí)算法由一個(gè)個(gè)計(jì)算單元組成,我們稱這些計(jì)算單元為算來自:百科
- 人工神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí) 更多內(nèi)容
-
GA CS )能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,CAE等;G系列適合于3D動(dòng)畫渲染,CAD等 應(yīng)用場(chǎng)景 人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可在短時(shí)間內(nèi)完成海量計(jì)算;Pi1實(shí)例整型計(jì)算來自:百科分類、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)來自:百科華為云計(jì)算 云知識(shí) 什么是 視頻標(biāo)簽 什么是視頻標(biāo)簽 時(shí)間:2020-09-15 15:42:21 視頻標(biāo)簽(簡(jiǎn)稱VCT),基于深度學(xué)習(xí)對(duì)視頻進(jìn)行場(chǎng)景分類、人物識(shí)別、 語(yǔ)音識(shí)別 、文字識(shí)別等多維度分析,形成層次化的分類標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽來自:百科通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 服務(wù)咨詢 大數(shù)據(jù)分析 人工智能應(yīng)用來自:專題圖像內(nèi)容檢測(cè)和 視頻審核 服務(wù)。 內(nèi)容審核-圖像 圖像 內(nèi)容審核 ,利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中的涉政敏感人物、暴恐元素、涉黃內(nèi)容等,幫助業(yè)務(wù)規(guī)避違規(guī)風(fēng)險(xiǎn)。 內(nèi)容審核-文本 文本內(nèi)容審核 ,采用人工智能文本檢測(cè)技術(shù)有效識(shí)別涉黃、涉政、廣告、辱罵、違禁品和灌水文本內(nèi)容,提供定制化的文本敏感內(nèi)容審核方案。來自:百科RASR優(yōu)勢(shì) 識(shí)別準(zhǔn)確率高 采用最新一代語(yǔ)音識(shí)別技術(shù),基于深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,簡(jiǎn)稱DNN)技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快 把語(yǔ)言模型、詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處于領(lǐng)先地位。來自:百科時(shí)間:2020-10-30 15:12:04 圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)。基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能來自:百科
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》~人工神經(jīng)網(wǎng)絡(luò)激蕩70年
- 《神經(jīng)網(wǎng)絡(luò)與PyTorch實(shí)戰(zhàn)》——1.2.3 人工神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)
- 人工智能深度學(xué)習(xí)
- 神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)
- 《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》~人工神經(jīng)網(wǎng)絡(luò)+單層(Perceptron)感知器原理及matlab實(shí)現(xiàn)
- 機(jī)器學(xué)習(xí)、深度學(xué)習(xí)與神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)入門之神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)(七)——卷積神經(jīng)網(wǎng)絡(luò)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.4.3 神經(jīng)網(wǎng)絡(luò)