- 基于深度學(xué)習(xí)的圖像目標(biāo)檢測(cè) 內(nèi)容精選 換一換
-
戶(hù)的購(gòu)物體驗(yàn)。 圖1商品圖片搜索示意圖 版權(quán)圖片搜索 版權(quán)圖片是攝影和設(shè)計(jì)類(lèi)網(wǎng)站的重要資產(chǎn),版權(quán)圖片搜索可以從海量圖片庫(kù)中快速定位侵權(quán)盜用圖片,幫助圖庫(kù)網(wǎng)站捍衛(wèi)權(quán)益。 圖2版權(quán)圖片搜索示意圖 商品推薦 將用戶(hù)拍攝的圖片在商品庫(kù)中搜索,找到同款或相似的商品,進(jìn)行商品銷(xiāo)售或者相關(guān)商品推薦。來(lái)自:百科內(nèi)容審核 服務(wù)提供圖文視頻內(nèi)容檢測(cè),覆蓋涉黃、廣告、涉暴等多種違規(guī)風(fēng)險(xiǎn)的內(nèi)容審核,以及檢測(cè)圖像清晰度和構(gòu)圖質(zhì)量等功能。 內(nèi)容審核的應(yīng)用場(chǎng)景 經(jīng)典應(yīng)用場(chǎng)景 不合規(guī)內(nèi)容檢測(cè) 不合規(guī)內(nèi)容檢測(cè) 不合規(guī)內(nèi)容的識(shí)別和處理是UGC類(lèi)網(wǎng)站內(nèi)容審核的重點(diǎn)工作,基于內(nèi)容檢測(cè),可以識(shí)別并預(yù)警用戶(hù)上傳的不合規(guī)內(nèi)容,幫助客戶(hù)快速定位處理,降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),維護(hù)網(wǎng)站內(nèi)容安全。來(lái)自:專(zhuān)題
- 基于深度學(xué)習(xí)的圖像目標(biāo)檢測(cè) 相關(guān)內(nèi)容
-
務(wù)構(gòu)建發(fā)布,但可能存在一定的生產(chǎn)安全風(fēng)險(xiǎn)。 一種是Master加Agent模式。Master節(jié)點(diǎn)主要是處理調(diào)度構(gòu)建作業(yè),把構(gòu)建分發(fā)到Agent實(shí)際執(zhí)行,監(jiān)視Agent的狀態(tài)。業(yè)務(wù)構(gòu)建發(fā)布的工作交給Agent進(jìn)行,即執(zhí)行Master分配的任務(wù),并返回任務(wù)的進(jìn)度和結(jié)果。 本實(shí)踐采用M來(lái)自:專(zhuān)題,而不需要關(guān)心底層的技術(shù)。同時(shí),ModelArts支持Tensorflow、PyTorch、MindSpore等主流開(kāi)源的AI開(kāi)發(fā)框架,也支持開(kāi)發(fā)者使用自研的算法框架,匹配您的使用習(xí)慣。 ModelArts的理念就是讓AI開(kāi)發(fā)變得更簡(jiǎn)單、更方便。 面向不同經(jīng)驗(yàn)的AI開(kāi)發(fā)者,提供便來(lái)自:專(zhuān)題
- 基于深度學(xué)習(xí)的圖像目標(biāo)檢測(cè) 更多內(nèi)容
-
云知識(shí) 基于云容器引擎部署NGINX應(yīng)用 基于云容器引擎部署NGINX應(yīng)用 時(shí)間:2020-12-02 11:11:48 本實(shí)驗(yàn)指導(dǎo)用戶(hù)基于華為云云容器引擎CCE快速部署NGINX容器應(yīng)用,并管理該容器應(yīng)用的全生命周期的技能鍛煉,使用戶(hù)具備將云容器引擎應(yīng)用到實(shí)際項(xiàng)目中的能力。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求來(lái)自:百科
法應(yīng)用,并實(shí)現(xiàn)售賣(mài)機(jī)的智能化運(yùn)營(yíng),是一個(gè)貫穿數(shù)據(jù)開(kāi)發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 開(kāi)發(fā)者進(jìn)階課程 《EC-IoT物聯(lián)網(wǎng)技術(shù)開(kāi)發(fā)實(shí)戰(zhàn)》 EC-IoT是將對(duì)實(shí)時(shí)性、安全性和可靠性有嚴(yán)格要求的應(yīng)用部署在靠近數(shù)據(jù)源頭的網(wǎng)絡(luò)邊緣節(jié)點(diǎn)(如網(wǎng)關(guān))上,讓數(shù)據(jù)在最短的時(shí)間內(nèi)得到分析和處理,來(lái)自:專(zhuān)題
企業(yè)上云時(shí)會(huì)面臨云環(huán)境下的安全挑戰(zhàn),如何應(yīng)對(duì)非法入侵顯得尤為重要,微認(rèn)證通過(guò)對(duì)主機(jī)進(jìn)行安全監(jiān)測(cè),識(shí)別病毒并查殺隔離,保證企業(yè)主機(jī)正常運(yùn)行 立即購(gòu)買(mǎi) Web暴力破解漏洞挖掘 大數(shù)據(jù)時(shí)代,數(shù)據(jù)泄露事件愈發(fā)的頻繁和嚴(yán)重;暴力破解仍是安全事件的“高發(fā)地”,利用弱口令進(jìn)行暴力破解攻擊的安全事件占近年來(lái)年安全事件總數(shù)的33%來(lái)自:專(zhuān)題
第3章 財(cái)務(wù)報(bào)銷(xiāo)場(chǎng)景解決方案介紹 第4章 OCR 服務(wù)二次開(kāi)發(fā)案例介紹 第5章 基于ModelArts的OCR模型訓(xùn)練教程 文字識(shí)別 OCR 文字識(shí)別OCR提供在線(xiàn)文字識(shí)別服務(wù),將圖片或掃描件中的文字識(shí)別成可編輯的文本。 OCR文字識(shí)別 支持 證件識(shí)別 、 票據(jù)識(shí)別 、定制模板識(shí)別、通用表格文字識(shí)別等。來(lái)自:百科
企業(yè)上云時(shí)會(huì)面臨云環(huán)境下的安全挑戰(zhàn),如何應(yīng)對(duì)非法入侵顯得尤為重要,微認(rèn)證通過(guò)對(duì)主機(jī)進(jìn)行安全監(jiān)測(cè),識(shí)別病毒并查殺隔離,保證企業(yè)主機(jī)正常運(yùn)行 ¥88.00 立即購(gòu)買(mǎi) Web暴力破解漏洞挖掘 大數(shù)據(jù)時(shí)代,數(shù)據(jù)泄露事件愈發(fā)的頻繁和嚴(yán)重;暴力破解仍是安全事件的“高發(fā)地”,利用弱口令進(jìn)行暴力破解攻擊的安全事件占近年來(lái)年安全事件總數(shù)的33%來(lái)自:專(zhuān)題
法應(yīng)用,并實(shí)現(xiàn)售賣(mài)機(jī)的智能化運(yùn)營(yíng),是一個(gè)貫穿數(shù)據(jù)開(kāi)發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 開(kāi)發(fā)者進(jìn)階課程 《EC-IoT物聯(lián)網(wǎng)技術(shù)開(kāi)發(fā)實(shí)戰(zhàn)》 EC-IoT是將對(duì)實(shí)時(shí)性、安全性和可靠性有嚴(yán)格要求的應(yīng)用部署在靠近數(shù)據(jù)源頭的網(wǎng)絡(luò)邊緣節(jié)點(diǎn)(如網(wǎng)關(guān))上,讓數(shù)據(jù)在最短的時(shí)間內(nèi)得到分析和處理,來(lái)自:專(zhuān)題
GPU加速云服務(wù)器的優(yōu)勢(shì) GPU加速云服務(wù)器的優(yōu)勢(shì) 時(shí)間:2020-10-12 17:07:27 GPU加速云服務(wù)器(GPU Accelerated Cloud Server,GA CS )能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,C來(lái)自:百科
清晰度檢測(cè) 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖像是否清晰進(jìn)行預(yù)測(cè),識(shí)別拍攝的企業(yè)表單等原始圖片是清晰還是模糊,廣泛應(yīng)用于上傳照片到業(yè)務(wù)系統(tǒng)中的場(chǎng)景。 扭曲校正 利用圖像處理技術(shù)對(duì)表單類(lèi)圖像進(jìn)行扭曲識(shí)別和校正,識(shí)別拍攝的企業(yè)表單等圖像是扭曲的還是整齊的,并對(duì)扭曲的表單圖像進(jìn)行校正,廣泛應(yīng)用于需上傳電子表單的業(yè)務(wù)系統(tǒng)中的場(chǎng)景。來(lái)自:百科
Cloud Server, GACS)能夠提供強(qiáng)大的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。 GPU云服務(wù)器 (GPU Accelerated Cloud Server, GACS)能夠提供強(qiáng)大的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。 產(chǎn)品詳情 GPU云服務(wù)器應(yīng)用場(chǎng)景來(lái)自:專(zhuān)題
角色: IAM 最初提供的一種根據(jù)用戶(hù)的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件等。基于策略的授權(quán)是一種更加靈活的授權(quán)方式,能夠滿(mǎn)足企業(yè)對(duì)權(quán)限最小化的安全管控要求。來(lái)自:專(zhuān)題
- 基于深度學(xué)習(xí)的小目標(biāo)檢測(cè)
- 【圖像分割】走進(jìn)基于深度學(xué)習(xí)的圖像分割
- 【技術(shù)分享】基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法發(fā)展(一)
- 基于深度學(xué)習(xí)的目標(biāo)檢測(cè)(Deep Learning-based Object Detection)
- OpenCV中的深度學(xué)習(xí)目標(biāo)檢測(cè)
- 基于深度學(xué)習(xí)的圖像處理網(wǎng)站|簡(jiǎn)記
- 基于深度學(xué)習(xí)的圖像分割技術(shù)及應(yīng)用
- 使用TensorFlow構(gòu)建深度學(xué)習(xí)模型:圖像分類(lèi)與目標(biāo)檢測(cè)
- 深度學(xué)習(xí)中的目標(biāo)檢測(cè)原理概述
- 深度學(xué)習(xí)閱讀導(dǎo)航 | 04 FPN:基于特征金字塔網(wǎng)絡(luò)的目標(biāo)檢測(cè)