- 層狀結(jié)構(gòu)的深度學(xué)習(xí)模型 內(nèi)容精選 換一換
-
用算法模型。幫助開發(fā)者便捷地使用華為AI使能平臺(tái)Mordelarts開發(fā)、迭代、發(fā)布和變現(xiàn)算法,模型。 人工智能市場(chǎng)的商品有: 藝賽旗機(jī)器人流程自動(dòng)化軟件 IS-RPA AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海來自:云商店
- 層狀結(jié)構(gòu)的深度學(xué)習(xí)模型 相關(guān)內(nèi)容
-
專屬定制:根據(jù)場(chǎng)景數(shù)據(jù)自定制模型。 高效的行業(yè)算法 多行業(yè):積累10+行業(yè)/場(chǎng)景的預(yù)訓(xùn)練模型。 高精度:大部分模型的準(zhǔn)確率高于90%。 少數(shù)據(jù):訓(xùn)練所需的數(shù)據(jù)量更少。 智能標(biāo)注:提升標(biāo)注效率。 極致性能 依托ModelArts基礎(chǔ)平臺(tái),深度軟硬件協(xié)同。 資源秒級(jí)調(diào)度,按需使用。 訓(xùn)練任務(wù)性能提升30%。來自:百科實(shí)戰(zhàn)派帶你云上體驗(yàn)機(jī)器學(xué)習(xí),不會(huì)算法照樣玩轉(zhuǎn)AI。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人工智能發(fā)展歷程及行業(yè)應(yīng)用介紹,機(jī)器學(xué)習(xí)講解及實(shí)操演示、AI應(yīng)用學(xué)習(xí)方法介紹。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解行業(yè)趨勢(shì)及應(yīng)用前景、掌握機(jī)器學(xué)習(xí)的應(yīng)用,及如何進(jìn)行AI應(yīng)用的學(xué)習(xí)。 課程大綱 第1節(jié)來自:百科
- 層狀結(jié)構(gòu)的深度學(xué)習(xí)模型 更多內(nèi)容
-
語音識(shí)別 服務(wù)可以實(shí)現(xiàn)1分鐘以內(nèi)、不超過4MB的音頻到文字的轉(zhuǎn)換。對(duì)于用戶上傳的完整的錄音文件,系統(tǒng)通過處理,生成語音對(duì)應(yīng)文字內(nèi)容。 ASR優(yōu)勢(shì) 效果出眾 使用深度學(xué)習(xí)技術(shù),語音識(shí)別準(zhǔn)確率超過95%,在業(yè)界具有一定的技術(shù)優(yōu)勢(shì)。 穩(wěn)定可靠 成功應(yīng)用于各類場(chǎng)景,基于華為等企業(yè)客戶的長(zhǎng)期實(shí)踐,經(jīng)受過復(fù)雜場(chǎng)景考驗(yàn)。來自:百科角色: IAM 最初提供的一種根據(jù)用戶的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件等?;诓呗?span style='color:#C7000B'>的授權(quán)是一種更加靈活的授權(quán)方式,能夠滿足企業(yè)對(duì)權(quán)限最小化的安全管控要求。來自:專題,減少火災(zāi)隱患。 方案優(yōu)勢(shì) 1. 行業(yè)應(yīng)用上算法開發(fā)經(jīng)驗(yàn)積累豐富:算法會(huì)自動(dòng)利用相關(guān)先驗(yàn)知識(shí)對(duì)深度學(xué)習(xí)模型的檢測(cè)結(jié)果進(jìn)行判別,排除誤檢測(cè),準(zhǔn)確可靠。利用數(shù)字圖像處理技術(shù)和先進(jìn)的深度學(xué)習(xí)技術(shù),可對(duì)廚房進(jìn)行全天候智能監(jiān)測(cè)。 2. 針對(duì)客戶需求進(jìn)行定制化功能開發(fā):針對(duì)不同行業(yè)應(yīng)用需求,來自:云商店本課程為AI全棧成長(zhǎng)計(jì)劃第二階段課程:AI進(jìn)階篇。本階段將由華為AI專家?guī)?span style='color:#C7000B'>學(xué)習(xí)AI開發(fā)兩大熱門領(lǐng)域:圖像分類和物體檢測(cè)的模型開發(fā),正式入門AI代碼開發(fā)! 目標(biāo)學(xué)員 高校學(xué)生、個(gè)人開發(fā)者中的AI愛好者、學(xué)習(xí)者 課程目標(biāo) 了解、掌握 AI 開發(fā)的基本流程,完成常見 AI 模型的開發(fā)部署。 課程大綱 第1章 全流程AI開發(fā)平臺(tái)介紹-ModelArts來自:百科互評(píng)計(jì)分規(guī)則:學(xué)生作業(yè)成績(jī)=所有互評(píng)分?jǐn)?shù)的平均分-待評(píng)作業(yè)份數(shù)*5%*作業(yè)總分 互評(píng)截止之后,學(xué)生可以看到自己作業(yè)的成績(jī)。成績(jī)頁面會(huì)顯示每位同學(xué)的匿名評(píng)分和評(píng)價(jià)。 如果學(xué)生對(duì)自己的成績(jī)有異議,可以點(diǎn)擊藍(lán)色字體的【申述】進(jìn)行申述。系統(tǒng)會(huì)將學(xué)生的申訴請(qǐng)求提交給教師,由教師完成對(duì)申述請(qǐng)求的處理。教師可以修改學(xué)生的作業(yè)得來自:云商店
- BERT: 一種基于 Transformer 結(jié)構(gòu)的深度學(xué)習(xí)模型介紹
- 深度學(xué)習(xí)模型結(jié)構(gòu)復(fù)雜、參數(shù)眾多,如何更直觀地深入理解你的模型?
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)應(yīng)用篇-元學(xué)習(xí)[14]:基于優(yōu)化的元學(xué)習(xí)-MAML模型、LEO模型、Reptile模型
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 利用深度學(xué)習(xí)建立流失模型
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型