- 流式計(jì)算框架 內(nèi)容精選 換一換
-
Processing-time和Ingestion-time支持。 高度靈活的流式窗口支持:Flink能夠支持時(shí)間窗口、計(jì)數(shù)窗口、會(huì)話窗口,以及數(shù)據(jù)驅(qū)動(dòng)的自定義窗口,可以通過靈活的觸發(fā)條件定制,實(shí)現(xiàn)復(fù)雜的流式計(jì)算模式。 容錯(cuò)機(jī)制 分布式系統(tǒng),單個(gè)task或節(jié)點(diǎn)的崩潰或故障,往往會(huì)導(dǎo)致來自:百科0需要對(duì)海量,多樣化,高并發(fā)的數(shù)據(jù)進(jìn)行實(shí)時(shí)分析,交互式查詢。包含的關(guān)鍵技術(shù)有: 1. MR批處理;Spark內(nèi)存計(jì)算;Elk/Solr交互式分析;Storm流式計(jì)算; 2. YARN統(tǒng)一資源管理; 3. 統(tǒng)一數(shù)據(jù)存儲(chǔ)HDFS/HBase/MPP。 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)證,盡在????來自:百科
- 流式計(jì)算框架 相關(guān)內(nèi)容
-
HyperMPI是基于Open MPI 4.0.3和Open UCX 1.6.0,支持MPI-V3.1標(biāo)準(zhǔn)的并行計(jì)算API接口,新增了優(yōu)化的集合通信計(jì)算框架。HyperMPI對(duì)數(shù)據(jù)密集型和高性能計(jì)算提供了網(wǎng)絡(luò)加速能力,使能了節(jié)點(diǎn)間高速通信網(wǎng)絡(luò)和節(jié)點(diǎn)內(nèi)共享內(nèi)存機(jī)制,以及優(yōu)化的集合通信算法。 使用說明來自:百科華為云計(jì)算 云知識(shí) 云數(shù)據(jù)遷移 有什么功能 云數(shù)據(jù)遷移有什么功能 時(shí)間:2020-09-18 15:37:34 CDM 服務(wù)基于分布式計(jì)算框架,利用并行化處理技術(shù),支持用戶穩(wěn)定高效地對(duì)海量數(shù)據(jù)進(jìn)行移動(dòng),實(shí)現(xiàn)不停服數(shù)據(jù)遷移,快速構(gòu)建所需的數(shù)據(jù)架構(gòu)。 產(chǎn)品功能 表/文件/整庫(kù)遷移 支持批來自:百科
- 流式計(jì)算框架 更多內(nèi)容
-
儲(chǔ)、查詢和分析的統(tǒng)一平臺(tái),幫助企業(yè)快速構(gòu)建海量數(shù)據(jù)信息處理系統(tǒng),可解決各大企業(yè)的以下需求: 海量數(shù)據(jù)的分析與計(jì)算 海量數(shù)據(jù)的存儲(chǔ) 海量數(shù)據(jù)流式處理 MapReduce服務(wù) MRS MapReduce服務(wù)(MapReduce Service)提供租戶完全可控的企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù)來自:百科高效率 TOP CDM任務(wù)基于分布式計(jì)算框架,自動(dòng)將任務(wù)切分為獨(dú)立的子任務(wù)并行執(zhí)行,能夠極大提高數(shù)據(jù)遷移的效率。針對(duì)Hive、HBase、MySQL、DWS( 數(shù)據(jù)倉(cāng)庫(kù) 服務(wù))數(shù)據(jù)源,使用高效的數(shù)據(jù)導(dǎo)入接口導(dǎo)入數(shù)據(jù)。 CDM任務(wù)基于分布式計(jì)算框架,自動(dòng)將任務(wù)切分為獨(dú)立的子任務(wù)并行執(zhí)行來自:專題批量刪除彈性公網(wǎng)IPBatchDeletePublicIp 批量創(chuàng)建彈性公網(wǎng)IPBatchCreatePublicips 相關(guān)推薦 流式文件處理:技術(shù)原理 約束與限制:函數(shù)運(yùn)行資源限制 函數(shù)流簡(jiǎn)介:組件說明 修訂記錄 流式文件處理:操作步驟 函數(shù)工作流 :同步執(zhí)行函數(shù) API概覽 創(chuàng)建ERP單據(jù)審批同步流 創(chuàng)建采購(gòu)申請(qǐng)審批同步流來自:百科與本地?cái)?shù)據(jù)相互遷移。 產(chǎn)品優(yōu)勢(shì) 支持多種異構(gòu)數(shù)據(jù)源:支持近20種常用數(shù)據(jù)源,滿足數(shù)據(jù)在云上和云下的不同遷移場(chǎng)景。 遷移效率高:基于分布式計(jì)算框架進(jìn)行數(shù)據(jù)任務(wù)執(zhí)行和數(shù)據(jù)傳輸優(yōu)化,并針對(duì)特定數(shù)據(jù)源寫入做了專項(xiàng)優(yōu)化,遷移效率高。 簡(jiǎn)單易用:免編程,向?qū)饺蝿?wù)開發(fā)界面,通過簡(jiǎn)單配置幾分鐘即可完成遷移任務(wù)開發(fā)。來自:百科時(shí)間:2020-11-25 15:13:31 本視頻主要為您介紹 實(shí)時(shí)流計(jì)算服務(wù) 入門的教程指導(dǎo)。 場(chǎng)景描述: CS 服務(wù)是運(yùn)行在公有云上的實(shí)時(shí)流式大數(shù)據(jù)分析服務(wù),全托管的方式用戶無需感知計(jì)算集群,只需聚焦于Stream SQL業(yè)務(wù),即時(shí)執(zhí)行作業(yè),完全兼容Apache Flink API和Apache來自:百科0時(shí)代。 移動(dòng)互聯(lián)網(wǎng)的發(fā)展,需要對(duì)海量,多樣化,高并發(fā)的數(shù)據(jù)進(jìn)行實(shí)時(shí)分析,交互式查詢。使大數(shù)據(jù)進(jìn)入了2.0時(shí)代。 當(dāng)前,物聯(lián)網(wǎng)的發(fā)展,需要對(duì)海量流式數(shù)據(jù),人工智能分析等提供毫秒級(jí)的低時(shí)延處理能力,所以我們正處在大數(shù)據(jù)3.0時(shí)代,需要更先進(jìn)的認(rèn)知計(jì)算。 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)來自:百科析 時(shí)間:2021-06-17 14:58:31 數(shù)據(jù)庫(kù) GaussDB (DWS)在實(shí)時(shí)數(shù)據(jù)分析的應(yīng)用如下圖所示。分析過程有如下的特點(diǎn): 流式數(shù)據(jù)實(shí)時(shí)入庫(kù):IoT、互聯(lián)網(wǎng)等數(shù)據(jù)經(jīng)過流計(jì)算及AI服務(wù)處理后,可實(shí)時(shí)寫入GaussDB(DWS)。 實(shí)時(shí)監(jiān)控與預(yù)測(cè):圍繞數(shù)據(jù)進(jìn)行分析和預(yù)測(cè)來自:百科在線遷移是在業(yè)務(wù)不停機(jī)的情況下,完整地把對(duì)方數(shù)據(jù)庫(kù)搬過來; 2. 實(shí)時(shí)同步是在以毫秒時(shí)延,將需要的數(shù)據(jù)一直同步,業(yè)務(wù)間共享; 3. 數(shù)據(jù)訂閱是把變化的數(shù)據(jù),流式地推送給下游業(yè)務(wù)讀取和消費(fèi); 4. 異地災(zāi)備是在異地做一份完整數(shù)據(jù)的保護(hù),以備災(zāi)難時(shí)恢復(fù)業(yè)務(wù); 5. 云上備份是將外部備份定期保存在云上,非實(shí)時(shí),成本低。來自:百科、數(shù)據(jù)訂閱、流式計(jì)算等功能,最大程度減少研發(fā)和運(yùn)維的復(fù)雜度。 如何十分鐘快速上手時(shí)序數(shù)據(jù)庫(kù)?主流時(shí)序數(shù)據(jù)庫(kù)在線獲取。核心代碼,包括集群功能全部開源。針對(duì)物聯(lián)網(wǎng)、車聯(lián)網(wǎng)、工業(yè)互聯(lián)網(wǎng)、IT運(yùn)維等設(shè)計(jì)和優(yōu)化的大數(shù)據(jù)平臺(tái)。快10倍以上的時(shí)序數(shù)據(jù)庫(kù)功能,提供緩存、數(shù)據(jù)訂閱、流式計(jì)算等功能,最大程度減少研發(fā)和運(yùn)維的復(fù)雜度。來自:專題Kafka客戶端。 分布式消息服務(wù) Kafka 分布式消息服務(wù) Kafka 是一個(gè)高吞吐、高可用的消息中間件服務(wù),適用于構(gòu)建實(shí)時(shí)數(shù)據(jù)管道、流式數(shù)據(jù)處理、第三方解耦、流量削峰去谷等場(chǎng)景,具有大規(guī)模、高可靠、高并發(fā)訪問、可擴(kuò)展且完全托管的特點(diǎn),是分布式應(yīng)用上云必不可少的重要組件 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面來自:百科框架(如Spark、Hadoop、Hbase)在可定制的群集上處理和分析大數(shù)據(jù)集。借助公有云MRS,您可以為機(jī)器學(xué)習(xí)、圖形分析、數(shù)據(jù)轉(zhuǎn)換、流式處理數(shù)據(jù)以及您可以編寫代碼的幾乎任何應(yīng)用程序運(yùn)行各種橫向擴(kuò)展的數(shù)據(jù)處理任務(wù)。您還可以將GaussDB(DWS)SQL on OBS 與MRS來自:百科
- Golang框架實(shí)戰(zhàn)-KisFlow流式計(jì)算框架(1)-概述
- Java中的大數(shù)據(jù)流式計(jì)算與Apache Kafka集成!
- 《大數(shù)據(jù)技術(shù)叢書 Flink原理、實(shí)戰(zhàn)與性能優(yōu)化》—1.2.4 為什么會(huì)是Flink
- 《Flink原理、實(shí)戰(zhàn)與性能優(yōu)化》 —1.2.4 為什么會(huì)是Flink
- 《大數(shù)據(jù)技術(shù)叢書Flink原理、實(shí)戰(zhàn)與性能優(yōu)化》—1.2.4 為什么會(huì)是Flink
- 大數(shù)據(jù)Flink進(jìn)階(三):Flink核心特性
- Pandas高級(jí)數(shù)據(jù)處理:數(shù)據(jù)流式計(jì)算
- 聊聊我與流式計(jì)算的故事
- Flink從入門到精通100篇(十六)-—— Data Source 簡(jiǎn)介及如何自定義一個(gè)source
- 大數(shù)據(jù)Flink進(jìn)階(二):數(shù)據(jù)架構(gòu)的演變