- mapreduce數(shù)據(jù)切分 內(nèi)容精選 換一換
-
什么是熱數(shù)據(jù)、溫數(shù)據(jù)、冷數(shù)據(jù)? 什么是熱數(shù)據(jù)、溫數(shù)據(jù)、冷數(shù)據(jù)? 時(shí)間:2021-05-25 16:02:57 存儲(chǔ)與備份 熱數(shù)據(jù)指頻繁訪問(wèn)的在線類(lèi)數(shù)據(jù),對(duì)存儲(chǔ)性能要求高。 冷數(shù)據(jù)指不經(jīng)常訪問(wèn)的離線類(lèi)數(shù)據(jù),比如備份和歸檔數(shù)據(jù)。存儲(chǔ)性能要求相對(duì)低,要求大容量存儲(chǔ)介質(zhì)。 溫數(shù)據(jù)的訪問(wèn)頻來(lái)自:百科時(shí)間:2021-07-09 09:36:18 云小課 MapReduce Hive是建立在Hadoop上的數(shù)據(jù)倉(cāng)庫(kù)框架,提供大數(shù)據(jù)平臺(tái)批處理計(jì)算能力,能夠?qū)Y(jié)構(gòu)化/半結(jié)構(gòu)化數(shù)據(jù)進(jìn)行批量分析匯總完成數(shù)據(jù)計(jì)算。提供類(lèi)似SQL的Hive Query Language語(yǔ)言操作結(jié)構(gòu)化數(shù)據(jù),其基本原理是將HQL語(yǔ)言自來(lái)自:百科
- mapreduce數(shù)據(jù)切分 相關(guān)內(nèi)容
-
第2章 MRS 部署 第3章 大數(shù)據(jù)遷移方案 MapReduce服務(wù) MRS MapReduce服務(wù)(MapReduce Service)提供租戶完全可控的企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),輕松運(yùn)行Hadoop、Spark、HBase、Kafka、Storm等大數(shù)據(jù)組件。包年更優(yōu)惠,買(mǎi)1年只需付10個(gè)月費(fèi)用來(lái)自:百科加密云硬盤(pán)的備份數(shù)據(jù)會(huì)以加密方式存放。 云存儲(chǔ) 彈性文件服務(wù)SFS SFS服務(wù)端數(shù)據(jù)加密 云數(shù)據(jù)庫(kù) 云數(shù)據(jù)庫(kù)MySQL、云數(shù)據(jù)庫(kù)Postgre SQL、云數(shù)據(jù)庫(kù)SQL Server RDS數(shù)據(jù)庫(kù)服務(wù)端數(shù)據(jù)加密 云數(shù)據(jù)庫(kù) 文檔數(shù)據(jù)庫(kù)服務(wù) DDS DDS數(shù)據(jù)庫(kù)服務(wù)端數(shù)據(jù)加密 EI企業(yè)智能來(lái)自:專(zhuān)題
- mapreduce數(shù)據(jù)切分 更多內(nèi)容
-
務(wù)不會(huì)受集群規(guī)模影響而性能或者功能出現(xiàn)問(wèn)題。 跨源復(fù)雜數(shù)據(jù)的SQL查詢優(yōu)化 出于管理和信息收集的需要,企業(yè)內(nèi)部會(huì)存儲(chǔ)海量數(shù)據(jù),包括數(shù)目眾多的各種數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)等,此時(shí)會(huì)面臨以下困境:數(shù)據(jù)源種類(lèi)繁多,數(shù)據(jù)集結(jié)構(gòu)化混合,相關(guān)數(shù)據(jù)存放分散等,這就導(dǎo)致了跨源復(fù)雜查詢因傳輸效率低,耗時(shí)長(zhǎng)。來(lái)自:專(zhuān)題
華為云計(jì)算 云知識(shí) DDM 實(shí)現(xiàn)數(shù)據(jù)數(shù)據(jù)分片方法 DDM實(shí)現(xiàn)數(shù)據(jù)數(shù)據(jù)分片方法 時(shí)間:2021-05-31 16:17:12 數(shù)據(jù)庫(kù) 傳統(tǒng)由應(yīng)用自己實(shí)現(xiàn)分片: 1. 應(yīng)用邏輯復(fù)雜:由應(yīng)用改寫(xiě)SQL語(yǔ)句,將SQL路由到不同的DB,并聚合結(jié)果; 2. DB故障和調(diào)整都需要應(yīng)用同步調(diào)整,運(yùn)維難度劇增;來(lái)自:百科
華為云計(jì)算 云知識(shí) 數(shù)據(jù)主題聯(lián)接(數(shù)據(jù)中臺(tái)) 數(shù)據(jù)主題聯(lián)接(數(shù)據(jù)中臺(tái)) 時(shí)間:2020-11-18 16:38:33 數(shù)據(jù)主題聯(lián)接(數(shù)據(jù)中臺(tái))對(duì)數(shù)據(jù)湖的數(shù)據(jù)按業(yè)務(wù)流/事件、對(duì)象/主體進(jìn)行聯(lián)接和規(guī)則計(jì)算等處理,形成面向數(shù)據(jù)消費(fèi)的主題數(shù)據(jù),具有多角度、多層次、多粒度等特征,支撐業(yè)務(wù)分析、決策與執(zhí)行。來(lái)自:百科
云知識(shí) 數(shù)據(jù)湖數(shù)據(jù)庫(kù) 數(shù)據(jù)湖數(shù)據(jù)庫(kù) 時(shí)間:2020-12-04 11:23:11 數(shù)據(jù)湖探索( DLI )中數(shù)據(jù)庫(kù)的概念、基本用法與Oracle數(shù)據(jù)庫(kù)基本相同,它還是DLI管理權(quán)限的基礎(chǔ)單元,賦權(quán)以數(shù)據(jù)庫(kù)為單位。 在DLI中,表和數(shù)據(jù)庫(kù)是定義底層數(shù)據(jù)的元數(shù)據(jù)容器。表中的元數(shù)據(jù)讓DLI來(lái)自:百科
效、可靠、安全的計(jì)算環(huán)境。 數(shù)據(jù)集成 數(shù)據(jù)集成層提供了數(shù)據(jù)接入到MRS集群的能力,包括Flume(數(shù)據(jù)采集)、Loader(關(guān)系型數(shù)據(jù)導(dǎo)入)、Kafka(高可靠消息隊(duì)列),支持各種數(shù)據(jù)源導(dǎo)入數(shù)據(jù)到大數(shù)據(jù)集群中。 數(shù)據(jù)存儲(chǔ) MRS支持結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)在集群中的存儲(chǔ),并且支持多種高效的格式來(lái)滿足不同計(jì)算引擎的要求。來(lái)自:百科
更多相關(guān)文章精選推薦,帶您了解更多 華為云產(chǎn)品 MapReduce工作原理_MapReduce是什么意思_MapReduce流程_MRS_華為云 MapReduce服務(wù)_什么是MapReduce服務(wù)_什么是HBase MRS備份恢復(fù)_MapReduce備份_數(shù)據(jù)備份 MapReduce服務(wù)_如何使用MapR來(lái)自:專(zhuān)題
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)DWS冷熱數(shù)據(jù)分離 數(shù)據(jù)倉(cāng)庫(kù)DWS冷熱數(shù)據(jù)分離 時(shí)間:2021-03-05 15:08:32 數(shù)據(jù)倉(cāng)庫(kù) DWS將 OBS 上存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù)映射為外部表,從而利用數(shù)據(jù)庫(kù)SQL引擎的能力對(duì)OBS上的數(shù)據(jù)進(jìn)行分析。DWS數(shù)據(jù)倉(cāng)庫(kù) SQL On OBS,冷熱數(shù)據(jù)分離,歷史數(shù)據(jù)查詢免搬遷。來(lái)自:百科
時(shí)間:2020-09-23 11:18:41 大數(shù)據(jù)是人類(lèi)進(jìn)入互聯(lián)網(wǎng)時(shí)代以來(lái)面臨的一個(gè)巨大問(wèn)題:社會(huì)生產(chǎn)生活產(chǎn)生的數(shù)據(jù)量越來(lái)越大,數(shù)據(jù)種類(lèi)越來(lái)越多,數(shù)據(jù)產(chǎn)生的速度越來(lái)越快。傳統(tǒng)的數(shù)據(jù)處理技術(shù),比如說(shuō)單機(jī)存儲(chǔ),關(guān)系數(shù)據(jù)庫(kù)已經(jīng)無(wú)法解決這些新的大數(shù)據(jù)問(wèn)題。為解決以上大數(shù)據(jù)處理問(wèn)題,Apache基金會(huì)推出來(lái)自:百科
- MapReduce的邏輯切分split與合并combiner
- pytorch wh切分 合并
- 用戶故事切分招數(shù)
- PyTorch: 張量的拼接、切分、索引
- 【詳解】Mycat讀寫(xiě)分離+垂直切分+水平切分+er分片+全局表
- 大數(shù)據(jù)技術(shù)學(xué)習(xí)——MapReduce
- MapReduce數(shù)據(jù)傾斜與優(yōu)化
- 大數(shù)據(jù)之MapReduce和Yarn
- MapReduce快速入門(mén)系列(15) | MapReduce之?dāng)?shù)據(jù)清洗進(jìn)階版本
- 切分算法---Python自然語(yǔ)言處理(2)