- 并發(fā)并行 內(nèi)容精選 換一換
-
B性能大幅度領(lǐng)先。 超低復(fù)雜查詢(xún)時(shí)延 主要通過(guò)分布式全并行架構(gòu)提供極致的吞吐量性能。首先通過(guò)MPP節(jié)點(diǎn)并行,把執(zhí)行計(jì)劃動(dòng)態(tài)均勻分布到所有節(jié)點(diǎn);其次利用SMP算子級(jí)并行,將單節(jié)點(diǎn)內(nèi)的多個(gè)CPU核心做并行計(jì)算;最后通過(guò)指令級(jí)并行,實(shí)現(xiàn)1個(gè)指令同時(shí)操作多條數(shù)據(jù),進(jìn)而大幅度降低查詢(xún)時(shí)延。來(lái)自:專(zhuān)題B性能大幅度領(lǐng)先。 超低復(fù)雜查詢(xún)時(shí)延 主要通過(guò)分布式全并行架構(gòu)提供極致的吞吐量性能。首先通過(guò)MPP節(jié)點(diǎn)并行,把執(zhí)行計(jì)劃動(dòng)態(tài)均勻分布到所有節(jié)點(diǎn);其次利用SMP算子級(jí)并行,將單節(jié)點(diǎn)內(nèi)的多個(gè)CPU核心做并行計(jì)算;最后通過(guò)指令級(jí)并行,實(shí)現(xiàn)1個(gè)指令同時(shí)操作多條數(shù)據(jù),進(jìn)而大幅度降低查詢(xún)時(shí)延。來(lái)自:專(zhuān)題
- 并發(fā)并行 相關(guān)內(nèi)容
-
求,推薦搭配彈性負(fù)載均衡,自動(dòng)調(diào)整彈性計(jì)算資源,應(yīng)對(duì)高并發(fā),保證業(yè)務(wù)平穩(wěn)健康運(yùn)行,全動(dòng)態(tài)BGP高速接入,站點(diǎn)內(nèi)容動(dòng)靜分離,實(shí)現(xiàn)流暢的網(wǎng)站體驗(yàn)。 跨境電商服務(wù)器-圖形渲染 對(duì)圖像視頻質(zhì)量要求高、大內(nèi)存,大量數(shù)據(jù)處理,I/O并發(fā)能力??梢酝瓿煽焖俚臄?shù)據(jù)處理交換以及大量的GPU計(jì)算能力的場(chǎng)景。例如圖形渲染、工程制圖。來(lái)自:專(zhuān)題推薦使用內(nèi)存優(yōu)化型 彈性云服務(wù)器 ,主要提供高內(nèi)存實(shí)例,同時(shí)可以配置超高IO的云硬盤(pán)和合適的帶寬。 彈性云服務(wù)器-圖形渲染 對(duì)圖像視頻質(zhì)量要求高、大內(nèi)存,大量數(shù)據(jù)處理,I/O并發(fā)能力。可以完成快速的數(shù)據(jù)處理交換以及大量的GPU計(jì)算能力的場(chǎng)景。例如圖形渲染、工程制圖。 推薦使用GPU加速型彈性云服務(wù)器,基于NVIDIA來(lái)自:專(zhuān)題
- 并發(fā)并行 更多內(nèi)容
-
B性能大幅度領(lǐng)先。 超低復(fù)雜查詢(xún)時(shí)延 主要通過(guò)分布式全并行架構(gòu)提供極致的吞吐量性能。首先通過(guò)MPP節(jié)點(diǎn)并行,把執(zhí)行計(jì)劃動(dòng)態(tài)均勻分布到所有節(jié)點(diǎn);其次利用SMP算子級(jí)并行,將單節(jié)點(diǎn)內(nèi)的多個(gè)CPU核心做并行計(jì)算;最后通過(guò)指令級(jí)并行,實(shí)現(xiàn)1個(gè)指令同時(shí)操作多條數(shù)據(jù),進(jìn)而大幅度降低查詢(xún)時(shí)延。來(lái)自:專(zhuān)題Server,GA CS )能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,CAE等;G系列適合于3D動(dòng)畫(huà)渲染,CAD等 應(yīng)用場(chǎng)景 人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可來(lái)自:百科B性能大幅度領(lǐng)先。 超低復(fù)雜查詢(xún)時(shí)延 主要通過(guò)分布式全并行架構(gòu)提供極致的吞吐量性能。首先通過(guò)MPP節(jié)點(diǎn)并行,把執(zhí)行計(jì)劃動(dòng)態(tài)均勻分布到所有節(jié)點(diǎn);其次利用SMP算子級(jí)并行,將單節(jié)點(diǎn)內(nèi)的多個(gè)CPU核心做并行計(jì)算;最后通過(guò)指令級(jí)并行,實(shí)現(xiàn)1個(gè)指令同時(shí)操作多條數(shù)據(jù),進(jìn)而大幅度降低查詢(xún)時(shí)延。來(lái)自:專(zhuān)題推薦使用內(nèi)存優(yōu)化型彈性云服務(wù)器,主要提供高內(nèi)存實(shí)例,同時(shí)可以配置超高IO的云硬盤(pán)和合適的帶寬。 免費(fèi)的服務(wù)器 -圖形渲染 對(duì)圖像視頻質(zhì)量要求高、大內(nèi)存,大量數(shù)據(jù)處理,I/O并發(fā)能力??梢酝瓿煽焖俚臄?shù)據(jù)處理交換以及大量的GPU計(jì)算能力的場(chǎng)景。例如圖形渲染、工程制圖。 推薦使用GPU圖形加速型彈性云服務(wù)器,G1型彈性云服務(wù)器基于NVIDIA來(lái)自:專(zhuān)題B性能大幅度領(lǐng)先。 超低復(fù)雜查詢(xún)時(shí)延 主要通過(guò)分布式全并行架構(gòu)提供極致的吞吐量性能。首先通過(guò)MPP節(jié)點(diǎn)并行,把執(zhí)行計(jì)劃動(dòng)態(tài)均勻分布到所有節(jié)點(diǎn);其次利用SMP算子級(jí)并行,將單節(jié)點(diǎn)內(nèi)的多個(gè)CPU核心做并行計(jì)算;最后通過(guò)指令級(jí)并行,實(shí)現(xiàn)1個(gè)指令同時(shí)操作多條數(shù)據(jù),進(jìn)而大幅度降低查詢(xún)時(shí)延。來(lái)自:專(zhuān)題時(shí)間線Hash”兩層打散,分布式并行寫(xiě)入,且最高每天處理萬(wàn)億級(jí)時(shí)間點(diǎn)寫(xiě)入。 靈活彈性 計(jì)算獨(dú)立按需擴(kuò)展、擴(kuò)容不遷移數(shù)據(jù),分鐘級(jí)完成集群節(jié)點(diǎn)擴(kuò)縮容。 高壓縮率 列式存儲(chǔ)布局和專(zhuān)用壓縮算法,相比開(kāi)源版本壓縮率可以提升5~10倍左右。 高查詢(xún)性能 多節(jié)點(diǎn)多線程并行查詢(xún),可高效處理高并發(fā)大數(shù)據(jù)量分析任務(wù)。來(lái)自:專(zhuān)題OBS 是否支持批量上傳文件? OBS是否支持批量下載文件? 查看更多 計(jì)費(fèi)相關(guān) 如何購(gòu)買(mǎi)專(zhuān)屬對(duì)象存儲(chǔ)? 已購(gòu)買(mǎi)資源包,為什么仍然扣費(fèi)? 桶內(nèi)無(wú)對(duì)象為什么會(huì)產(chǎn)生流量? 并行文件系統(tǒng)是否支持資源包? 資源包是否支持退訂或修改? 查看更多 桶和對(duì)象相關(guān) 創(chuàng)建桶失敗 上傳對(duì)象失敗 下載對(duì)象失敗 刪除對(duì)象失敗 刪除桶失敗來(lái)自:專(zhuān)題B性能大幅度領(lǐng)先。 超低復(fù)雜查詢(xún)時(shí)延 主要通過(guò)分布式全并行架構(gòu)提供極致的吞吐量性能。首先通過(guò)MPP節(jié)點(diǎn)并行,把執(zhí)行計(jì)劃動(dòng)態(tài)均勻分布到所有節(jié)點(diǎn);其次利用SMP算子級(jí)并行,將單節(jié)點(diǎn)內(nèi)的多個(gè)CPU核心做并行計(jì)算;最后通過(guò)指令級(jí)并行,實(shí)現(xiàn)1個(gè)指令同時(shí)操作多條數(shù)據(jù),進(jìn)而大幅度降低查詢(xún)時(shí)延。來(lái)自:專(zhuān)題B性能大幅度領(lǐng)先。 超低復(fù)雜查詢(xún)時(shí)延 主要通過(guò)分布式全并行架構(gòu)提供極致的吞吐量性能。首先通過(guò)MPP節(jié)點(diǎn)并行,把執(zhí)行計(jì)劃動(dòng)態(tài)均勻分布到所有節(jié)點(diǎn);其次利用SMP算子級(jí)并行,將單節(jié)點(diǎn)內(nèi)的多個(gè)CPU核心做并行計(jì)算;最后通過(guò)指令級(jí)并行,實(shí)現(xiàn)1個(gè)指令同時(shí)操作多條數(shù)據(jù),進(jìn)而大幅度降低查詢(xún)時(shí)延。來(lái)自:專(zhuān)題B性能大幅度領(lǐng)先。 超低復(fù)雜查詢(xún)時(shí)延 主要通過(guò)分布式全并行架構(gòu)提供極致的吞吐量性能。首先通過(guò)MPP節(jié)點(diǎn)并行,把執(zhí)行計(jì)劃動(dòng)態(tài)均勻分布到所有節(jié)點(diǎn);其次利用SMP算子級(jí)并行,將單節(jié)點(diǎn)內(nèi)的多個(gè)CPU核心做并行計(jì)算;最后通過(guò)指令級(jí)并行,實(shí)現(xiàn)1個(gè)指令同時(shí)操作多條數(shù)據(jù),進(jìn)而大幅度降低查詢(xún)時(shí)延。來(lái)自:專(zhuān)題,為您提供易用、經(jīng)濟(jì)、敏捷和安全的FPGA云服務(wù)。 應(yīng)用: 視頻處理、機(jī)器學(xué)習(xí)、基因組學(xué)研究、金融風(fēng)險(xiǎn)分析。 場(chǎng)景特點(diǎn): 適合密集計(jì)算、高并發(fā)、高帶寬場(chǎng)景。 適用場(chǎng)景: 視頻處理:圖片自動(dòng)分類(lèi)識(shí)別、圖片搜索、視頻轉(zhuǎn)碼、實(shí)時(shí)渲染、互聯(lián)網(wǎng)直播和AR/VR等視頻應(yīng)用,需要大量的實(shí)時(shí)計(jì)算來(lái)自:百科B性能大幅度領(lǐng)先。 超低復(fù)雜查詢(xún)時(shí)延 主要通過(guò)分布式全并行架構(gòu)提供極致的吞吐量性能。首先通過(guò)MPP節(jié)點(diǎn)并行,把執(zhí)行計(jì)劃動(dòng)態(tài)均勻分布到所有節(jié)點(diǎn);其次利用SMP算子級(jí)并行,將單節(jié)點(diǎn)內(nèi)的多個(gè)CPU核心做并行計(jì)算;最后通過(guò)指令級(jí)并行,實(shí)現(xiàn)1個(gè)指令同時(shí)操作多條數(shù)據(jù),進(jìn)而大幅度降低查詢(xún)時(shí)延。來(lái)自:專(zhuān)題
- 云數(shù)據(jù)庫(kù) TaurusDB-舊鏈接
- 云數(shù)據(jù)庫(kù) TaurusDB
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 云數(shù)據(jù)庫(kù) TaurusDB 功能-舊鏈接
- 云數(shù)據(jù)庫(kù) TaurusDB 功能
- 云數(shù)據(jù)庫(kù) RDS for PostgreSQL
- 云數(shù)據(jù)庫(kù) RDS for MySQL-概覽
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)產(chǎn)品架構(gòu)_技術(shù)特點(diǎn)
- 表格存儲(chǔ)服務(wù)
- GPU加速云服務(wù)器