- 數(shù)據(jù)的可視化 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉庫服務(wù)的優(yōu)勢 數(shù)據(jù)倉庫服務(wù)的優(yōu)勢 時(shí)間:2020-09-24 10:52:19 DWS數(shù)據(jù)庫內(nèi)核使用華為自主研發(fā)的 GaussDB 數(shù)據(jù)庫,兼容PostgreSQL 9.2.4的數(shù)據(jù)庫內(nèi)核引擎,從單機(jī)OLTP數(shù)據(jù)庫改造為企業(yè)級(jí)MPP(大規(guī)模并行處理)架構(gòu)的OLAP分布式數(shù)據(jù)庫,其主要面向海量數(shù)據(jù)分析場景。來自:百科量化”,將多源、多種類的各部門數(shù)據(jù)數(shù)據(jù)加工成標(biāo)準(zhǔn)、清潔的數(shù)據(jù)資產(chǎn)供業(yè)務(wù)使用。 提升政府治理能力 大數(shù)據(jù)應(yīng)用能夠揭示傳統(tǒng)技術(shù)方式難以展現(xiàn)的關(guān)聯(lián)關(guān)系,推動(dòng)政府數(shù)據(jù)開放共享,促進(jìn)社會(huì)事業(yè)數(shù)據(jù)融合和資源整合,提升政府整體數(shù)據(jù)分析能力,為有效處理復(fù)雜社會(huì)問題提供新的手段。 政府及公共事業(yè)解決方案來自:百科
- 數(shù)據(jù)的可視化 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 鯤鵬大數(shù)據(jù)的軟件移植步驟 鯤鵬大數(shù)據(jù)的軟件移植步驟 時(shí)間:2021-05-24 10:28:04 大數(shù)據(jù) 鯤鵬大數(shù)據(jù)的軟件移植步驟如下。簡單常規(guī)配置,華為鯤鵬倉庫提供基本依賴下載,版本靈活選擇。 1. 基礎(chǔ)環(huán)境配置:gcc, jdk, maven等基本環(huán)境配置;來自:百科招聘專業(yè)DBA,運(yùn)維人員。 數(shù)據(jù)倉庫 on 云主機(jī) 購買并安裝數(shù)據(jù)倉庫軟件; 租用云主機(jī); 招聘專業(yè)DBA運(yùn)維人員。 華為云DWS 無需購買和安裝任何軟硬件; 按需隨時(shí)租用 DDS ; 無需招聘DBA,運(yùn)維人員。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行來自:百科
- 數(shù)據(jù)的可視化 更多內(nèi)容
-
數(shù)據(jù)分析與應(yīng)用 面向操作型場景,數(shù)據(jù)庫的管理可以由數(shù)據(jù)管理服務(wù) DAS 實(shí)現(xiàn),DAS是用來登錄和操作數(shù)據(jù)庫的Web服務(wù),提供數(shù)據(jù)庫運(yùn)維開發(fā)功能以及DevOPS服務(wù)。為方便用戶使用和運(yùn)維華為云RDS,提供數(shù)據(jù)和表結(jié)構(gòu)的同步、在線編輯,SQL輸入的智能提示等豐富的數(shù)據(jù)庫開發(fā)功能。同時(shí)面向大企業(yè)提供來自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)管理技術(shù)的新挑戰(zhàn) 數(shù)據(jù)管理技術(shù)的新挑戰(zhàn) 時(shí)間:2021-05-21 11:30:13 數(shù)據(jù)庫 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)管理技術(shù)的面臨的新挑戰(zhàn)主要來自高度可擴(kuò)展性和可伸縮性、數(shù)據(jù)類型多樣和異構(gòu)處理能力、數(shù)據(jù)處理時(shí)效性要求以及大數(shù)據(jù)來臨這四個(gè)方面。 1、高度可擴(kuò)展性和可伸縮性來自:百科區(qū)域。 GaussDB數(shù)據(jù)庫權(quán)限策略是什么? 根據(jù)授權(quán)精細(xì)程度分為角色和策略 角色: IAM 最初提供的一種根據(jù)用戶的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請求條件來自:專題此服務(wù)開發(fā)自己的加密應(yīng)用。數(shù)據(jù)加密技術(shù)的優(yōu)點(diǎn)如下: 第一,數(shù)據(jù)加密技術(shù)能夠始終保障數(shù)據(jù)的安全性。一般來說,當(dāng)數(shù)據(jù)從一個(gè)位置移動(dòng)到另一個(gè)位置的時(shí)候可以說是較為脆弱的,而這時(shí)候使用數(shù)據(jù)加密技術(shù),既能夠讓所移動(dòng)的數(shù)據(jù)信息能夠得到更安全的保障,不會(huì)因?yàn)槲恢?span style='color:#C7000B'>的變化而加大泄漏的風(fēng)險(xiǎn)。 第二,來自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫技術(shù)的發(fā)展歷程 數(shù)據(jù)庫技術(shù)的發(fā)展歷程 時(shí)間:2021-05-20 15:57:30 數(shù)據(jù)庫 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)管理是指對(duì)數(shù)據(jù)進(jìn)行分類、組織、編碼、存儲(chǔ)、檢索和維護(hù),是數(shù)據(jù)處理的中心問題。數(shù)據(jù)管理在應(yīng)用需求推動(dòng)下,以軟硬件的飛速發(fā)展為基礎(chǔ),發(fā)展為三個(gè)階段:人工管理、文件系統(tǒng)、數(shù)據(jù)庫系統(tǒng)。來自:百科是基于硬件、軟件系統(tǒng)不可靠、一定會(huì)有故障的假設(shè)進(jìn)行設(shè)計(jì)的,是基于 任何單臺(tái)計(jì)算機(jī)都無足夠能力處理海量數(shù)據(jù)的假設(shè)進(jìn)行設(shè)計(jì)的,因此 TDengine 從研 發(fā)的第一天起,就是按照分布式高可靠架構(gòu)進(jìn)行設(shè)計(jì)的,是完全去中心化的 TDengine的免費(fèi)時(shí)序數(shù)據(jù)庫如何保證高效性 TDengine 對(duì)每個(gè)數(shù)據(jù)采集點(diǎn)單獨(dú)建來自:專題可以在業(yè)務(wù)運(yùn)行時(shí)產(chǎn)生一份時(shí)間水平一致的快照數(shù)據(jù),具有業(yè)務(wù)數(shù)據(jù)分析價(jià)值,過程中的數(shù)據(jù)變化不會(huì)體現(xiàn)在導(dǎo)出數(shù)據(jù)中。 說明:全量階段使用快照模式導(dǎo)出能夠有效提升全量+增量場景下的數(shù)據(jù)同步效率,但PostgreSQL的快照機(jī)制會(huì)使導(dǎo)出期間數(shù)據(jù)庫的歷史數(shù)據(jù)不能被回收,可能有空間膨脹的現(xiàn)象。建議在全量或增量數(shù)據(jù)量大且源庫磁盤空間充足的情況下使用該方式。來自:百科云知識(shí) 為什么說大數(shù)據(jù)的發(fā)展是需求驅(qū)動(dòng)的 為什么說大數(shù)據(jù)的發(fā)展是需求驅(qū)動(dòng)的 時(shí)間:2021-05-24 09:15:11 大數(shù)據(jù) 大數(shù)據(jù)的技術(shù)發(fā)展是由社會(huì)進(jìn)步過程中,不斷變化的需求而驅(qū)動(dòng)的。 互聯(lián)網(wǎng)的發(fā)展,讓人們需要對(duì)海量的非結(jié)構(gòu)化數(shù)據(jù)進(jìn)行分布式存儲(chǔ),并行計(jì)算。所以大數(shù)據(jù)進(jìn)入了1.0時(shí)代。來自:百科算子,簡單拖拽即可完成對(duì)原始數(shù)據(jù)的清洗。物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)提供的資產(chǎn)建模能力,將幫助用戶實(shí)現(xiàn)對(duì)企業(yè)的各種物理資產(chǎn)的建模,規(guī)范數(shù)據(jù)格式和交互的語義接口;物聯(lián)網(wǎng)數(shù)據(jù)分析內(nèi)置高性能流計(jì)算引擎,滿足毫秒級(jí)實(shí)時(shí)處理性能要求 智能交通下的數(shù)據(jù)分析 智能交通下的數(shù)據(jù)分析: 業(yè)務(wù)挑戰(zhàn) 智能交通場來自:專題
- Spring Cloud【Finchley】-12使用Hystrix Dashboard實(shí)現(xiàn)Hystrix數(shù)據(jù)的可視化監(jiān)控
- 無人機(jī)圖像拼接數(shù)據(jù)的可視化與制圖技術(shù):以植被監(jiān)測為例
- 數(shù)據(jù)挖掘和可視化
- 基于 Matplotlib 的 Python 數(shù)據(jù)可視化庫指南
- 數(shù)據(jù)可視化:別讓你的數(shù)據(jù)“裸奔”!?
- 大數(shù)據(jù) │ ECharts與pyecharts數(shù)據(jù)可視化應(yīng)用
- 數(shù)據(jù)可視化:讓數(shù)據(jù)講故事的力量
- 人工智能驅(qū)動(dòng)的測井?dāng)?shù)據(jù)可視化方法
- 數(shù)據(jù)可視的優(yōu)勢:為什么要讓數(shù)據(jù)可視化?
- 數(shù)據(jù)可視化發(fā)展歷程