- 數(shù)據(jù)倉庫與數(shù)據(jù)挖掘邏輯模型 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 邏輯模型和物理模型的對(duì)比 邏輯模型和物理模型的對(duì)比 時(shí)間:2021-06-02 14:37:26 數(shù)據(jù)庫 邏輯模型與物理模型的對(duì)比如下: 名稱定義:邏輯模型取名按照業(yè)務(wù)規(guī)則和現(xiàn)實(shí)世界對(duì)象的命名規(guī)范來取名;物理模型需要考慮到數(shù)據(jù)庫產(chǎn)品限制,比如不能出現(xiàn)非法字符,不能使用數(shù)據(jù)庫關(guān)鍵詞,不能超長等約束;來自:百科
- 數(shù)據(jù)倉庫與數(shù)據(jù)挖掘邏輯模型 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 邏輯模型中的實(shí)體 邏輯模型中的實(shí)體 時(shí)間:2021-06-02 10:32:53 數(shù)據(jù)庫 根據(jù)實(shí)體的特點(diǎn),邏輯模型中的實(shí)體劃分為兩類: 1. 獨(dú)立型實(shí)體(Independent Entity) 直角矩形表示; 不依賴于其他實(shí)體,可以獨(dú)立存在。 2. 依賴型實(shí)體(Dependent來自:百科華為云計(jì)算 云知識(shí) 邏輯模型建設(shè)的方法 邏輯模型建設(shè)的方法 時(shí)間:2021-06-02 14:25:16 數(shù)據(jù)庫 在建設(shè)數(shù)據(jù)庫的邏輯模型時(shí),應(yīng)當(dāng)按照以下流程展開: 1. 建立命名規(guī)則; 2. 按照設(shè)計(jì)流程設(shè)計(jì)邏輯數(shù)據(jù)模型; 3. 確定實(shí)體和屬性; 4. 確定實(shí)體與實(shí)體之間的關(guān)系; 5來自:百科
- 數(shù)據(jù)倉庫與數(shù)據(jù)挖掘邏輯模型 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) GaussDB (DWS)的邏輯架構(gòu) GaussDB(DWS)的邏輯架構(gòu) 時(shí)間:2021-06-17 12:07:28 數(shù)據(jù)庫 GaussDB(DWS)的邏輯架構(gòu)如下圖。其中: CM: 集群管理模塊(Cluster Manager); 管理和監(jiān)控分布式系統(tǒng)中各個(gè)來自:百科華為云ModelArts助力 AI開發(fā)平臺(tái) —ModelArts SDK打通本地IDE與云端訓(xùn)練資源 【手摸手學(xué)ModelArts】兩行命令獲取ModelArts正版實(shí)戰(zhàn)教程 【我與ModelArts的故事】使用ModelArts搭建"人臉顏值評(píng)分"服務(wù) 我與ModelArts的故事 查看更多 收起來自:專題支持管理DWS、 DLI 、 MRS Hive等多種 數(shù)據(jù)倉庫 。 支持可視化和DDL方式管理數(shù)據(jù)庫表。 數(shù)據(jù)集成 與批量數(shù)據(jù)遷移無縫集成,依托批量數(shù)據(jù)遷移的強(qiáng)力支撐,支持20多種異構(gòu)數(shù)據(jù)源之間可靠高效的數(shù)據(jù)傳輸,輕松實(shí)現(xiàn)多數(shù)據(jù)源集成到數(shù)據(jù)倉庫。 腳本開發(fā) 提供在線腳本編輯器,支持多人協(xié)作來自:百科分布式數(shù)據(jù)庫中間件 創(chuàng)建邏輯庫和邏輯表 分布式 數(shù)據(jù)庫中間件 創(chuàng)建邏輯庫和邏輯表 時(shí)間:2020-11-23 14:50:43 本視頻主要為您介紹華為云分布式數(shù)據(jù)庫中間件創(chuàng)建邏輯庫和邏輯表的操作教程指導(dǎo)。 場(chǎng)景描述: DDM 實(shí)例創(chuàng)建后,需要?jiǎng)?chuàng)建邏輯庫,以邏輯庫為單位管理分布式數(shù)據(jù)庫。 邏輯庫創(chuàng)建需要來自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉庫服務(wù) 數(shù)據(jù)倉庫服務(wù) 時(shí)間:2020-12-17 10:05:04 數(shù)據(jù)倉庫服務(wù)基于華為 FusionInsight LibrA企業(yè)級(jí)數(shù)據(jù)倉庫內(nèi)核,提供即開即用、可擴(kuò)展且完全托管的分析型數(shù)據(jù)庫服務(wù)。兼容PostgreSQL生態(tài),您可基于標(biāo)準(zhǔn)SQL,結(jié)合商業(yè)來自:百科fka、Storm等大數(shù)據(jù)組件,并具備在后續(xù)根據(jù)業(yè)務(wù)需要進(jìn)行定制開發(fā)的能力,幫助企業(yè)快速構(gòu)建海量數(shù)據(jù)信息處理系統(tǒng),并通過對(duì)海量信息數(shù)據(jù)實(shí)時(shí)與非實(shí)時(shí)的分析挖掘,發(fā)現(xiàn)全新價(jià)值點(diǎn)和企業(yè)商機(jī)。 立即使用 在線體驗(yàn) MapReduce架構(gòu)圖 MapReduce架構(gòu)包括了基礎(chǔ)設(shè)施和大數(shù)據(jù)處理流程各個(gè)階段的能力。來自:專題
- 數(shù)據(jù)挖掘:數(shù)據(jù)倉庫相關(guān)知識(shí)筆記
- 【數(shù)據(jù)挖掘】-模型的評(píng)估(四)
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 數(shù)據(jù)挖掘特點(diǎn) | 數(shù)據(jù)挖掘組件化思想 | 決策樹模型 ) ★
- 《Python數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》—3.4.3 線性回歸模型
- 《Python數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》—3.7 基于邏輯回歸的環(huán)境數(shù)據(jù)檢測(cè)
- 數(shù)據(jù)倉庫架構(gòu):星型模型和雪花模型的選擇
- 【數(shù)據(jù)挖掘?qū)崙?zhàn)】——應(yīng)用系統(tǒng)負(fù)載分析與容量預(yù)測(cè)(ARIMA模型)
- 數(shù)據(jù)挖掘和可視化
- TypeScript 數(shù)據(jù)模型深度解析與邏輯推演
- 【愚公系列】軟考高級(jí)-架構(gòu)設(shè)計(jì)師 045-決策支持系統(tǒng)DSS
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)兼容性
- 智能數(shù)據(jù)洞察 DataArts Insight
- 工業(yè)智能體 - EI企業(yè)智能-華為云
- CloudRobo具身智能云服務(wù)
- 數(shù)據(jù)倉庫服務(wù) DWS
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 數(shù)據(jù)倉庫服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源