- 數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)非hdfs 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù) 和Hadoop大數(shù)據(jù)平臺(tái)對(duì)比 數(shù)據(jù)倉(cāng)庫(kù)和Hadoop大數(shù)據(jù)平臺(tái)對(duì)比 時(shí)間:2020-09-24 14:45:50 廣義上來(lái)說(shuō),Hadoop大數(shù)據(jù)平臺(tái)也可以看做是新一代的數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng),它也具有很多現(xiàn)代數(shù)據(jù)倉(cāng)庫(kù)的特征,也被企業(yè)所廣泛使用。因?yàn)镸PP架構(gòu)的可擴(kuò)展性,來(lái)自:百科華為云計(jì)算 云知識(shí) Docker架構(gòu) Docker架構(gòu) 時(shí)間:2021-07-01 16:03:24 云服務(wù)器 云計(jì)算 容器云 云主機(jī) 云容器引擎 在Docker架構(gòu)中,各個(gè)組件如何協(xié)同工作? 1、Docker Client:Docker是個(gè)采用的C/S架構(gòu)的應(yīng)用程序。Docker Client一般通過(guò)Docker來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)非hdfs 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 云硬盤應(yīng)用場(chǎng)景:數(shù)據(jù)倉(cāng)庫(kù) 云硬盤應(yīng)用場(chǎng)景:數(shù)據(jù)倉(cāng)庫(kù) 時(shí)間:2021-03-23 19:41:16 云硬盤 數(shù)據(jù)倉(cāng)庫(kù)是數(shù)據(jù)讀密集型的應(yīng)用場(chǎng)景,典型例子如oracle RAC、SAP HANA等。傳統(tǒng)企業(yè)核心數(shù)據(jù)庫(kù)上云往往會(huì)面臨性能、可靠性等各方面的問(wèn)題。例如oracle來(lái)自:百科從ODBC數(shù)據(jù)源中導(dǎo)入數(shù)據(jù)庫(kù)進(jìn)行設(shè)計(jì)。3. 管理:軟件覆蓋了整個(gè)系統(tǒng)的開(kāi)發(fā)周期,包括事務(wù)的進(jìn)程、分析、使用案例需求等。4. 非功能操作:軟件還包括一系列非功能的操作,如新元素瀏覽器、圖標(biāo)渲染引擎等,提高管理效率。5. 實(shí)用:軟件覆蓋了整個(gè)系統(tǒng)的開(kāi)發(fā)周期,包括事務(wù)的進(jìn)程、分析、使用案例需求等,實(shí)用性強(qiáng)。6來(lái)自:專題
- 數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)非hdfs 更多內(nèi)容
-
? 企業(yè)核心業(yè)務(wù)應(yīng)用架構(gòu)和集成架構(gòu)發(fā)展歷程 企業(yè)核心業(yè)務(wù)演進(jìn)我們將主要分成兩部分:應(yīng)用架構(gòu)發(fā)展歷程和集成架構(gòu)發(fā)展歷程。應(yīng)用架構(gòu)的演進(jìn),將依次經(jīng)歷單體應(yīng)用架構(gòu)、垂直架構(gòu)、SOA架構(gòu),最終發(fā)展至微服務(wù)架構(gòu)。 立即學(xué)習(xí) 最新文章 容器相關(guān)基礎(chǔ)操作 Docker架構(gòu) Docker Engine介紹和Docker內(nèi)部構(gòu)建來(lái)自:百科ented)、適合存儲(chǔ)海量非結(jié)構(gòu)化數(shù)據(jù)或半結(jié)構(gòu)化數(shù)據(jù)的、具備高可靠性、高性能、可靈活擴(kuò)展伸縮的、支持實(shí)時(shí)數(shù)據(jù)讀寫的分布式存儲(chǔ)系統(tǒng)。 MRS 集群的數(shù)據(jù)存儲(chǔ)使用HBase來(lái)承接,HBase是一個(gè)開(kāi)源的、面向列(Column-Oriented)、適合存儲(chǔ)海量非結(jié)構(gòu)化數(shù)據(jù)或半結(jié)構(gòu)化數(shù)據(jù)的來(lái)自:專題ka、Storm等大數(shù)據(jù)組件,并具備在后續(xù)根據(jù)業(yè)務(wù)需要進(jìn)行定制開(kāi)發(fā)的能力,幫助企業(yè)快速構(gòu)建海量數(shù)據(jù)信息處理系統(tǒng),并通過(guò)對(duì)海量信息數(shù)據(jù)實(shí)時(shí)與非實(shí)時(shí)的分析挖掘,發(fā)現(xiàn)全新價(jià)值點(diǎn)和企業(yè)商機(jī)。 存算分離介紹 MRS支持在大數(shù)據(jù)存儲(chǔ)容量大、計(jì)算資源需要彈性擴(kuò)展的場(chǎng)景下,用戶將數(shù)據(jù)存儲(chǔ)在 OBS來(lái)自:專題華為云計(jì)算 云知識(shí) 架構(gòu)設(shè)計(jì)基礎(chǔ) 架構(gòu)設(shè)計(jì)基礎(chǔ) 時(shí)間:2020-12-07 15:34:20 在做業(yè)務(wù)云遷移之前,從架構(gòu)設(shè)計(jì)的角度考慮高可用、高擴(kuò)展等問(wèn)題是必不可少的環(huán)節(jié),也是影響業(yè)務(wù)遷移進(jìn)度和效果的重要因素,學(xué)習(xí)本課程,將學(xué)會(huì)如何在云端設(shè)計(jì)合適的架構(gòu)來(lái)承載業(yè)務(wù),應(yīng)對(duì)后繼業(yè)務(wù)架構(gòu)的演進(jìn)。 課程簡(jiǎn)介來(lái)自:百科分析場(chǎng)景。 數(shù)據(jù)倉(cāng)庫(kù)遷移 數(shù)據(jù)倉(cāng)庫(kù)是企業(yè)的重要數(shù)據(jù)分析系統(tǒng),隨著業(yè)務(wù)量的增長(zhǎng),自建數(shù)倉(cāng)性能逐漸不能滿足實(shí)際要求,同時(shí)擴(kuò)展性差、成本高,也使擴(kuò)容極為困難。DWS作為云上企業(yè)級(jí)數(shù)據(jù)倉(cāng)庫(kù),具備高性能、低成本、易擴(kuò)展等特性,滿足大數(shù)據(jù)時(shí)代企業(yè)數(shù)據(jù)倉(cāng)庫(kù)業(yè)務(wù)訴求。 圖1數(shù)據(jù)倉(cāng)庫(kù)遷移 優(yōu)勢(shì) 平滑遷移來(lái)自:百科華為云計(jì)算 云知識(shí) DAS 的系統(tǒng)架構(gòu) DAS的系統(tǒng)架構(gòu) 時(shí)間:2021-05-31 17:24:04 數(shù)據(jù)庫(kù) DAS的系統(tǒng)架構(gòu)如下圖所示。其中的功能組件解釋如下: Conn Consoles:DAS連接管理的控制臺(tái); DAS Consoles:DAS Console是 數(shù)據(jù)管理服務(wù) 的統(tǒng)一入口,在Console來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)發(fā)展現(xiàn)狀及發(fā)展趨勢(shì) 數(shù)據(jù)倉(cāng)庫(kù)發(fā)展現(xiàn)狀及發(fā)展趨勢(shì) 時(shí)間:2021-03-03 14:09:48 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)是指從業(yè)務(wù)數(shù)據(jù)中創(chuàng)建信息數(shù)據(jù)庫(kù),并針對(duì)決策和分析進(jìn)行優(yōu)化。華為云數(shù)據(jù)倉(cāng)庫(kù)服務(wù)實(shí)時(shí)、簡(jiǎn)單、安全可信的企業(yè)級(jí)融合數(shù)據(jù)倉(cāng)庫(kù),可借助DWS Expr來(lái)自:百科大數(shù)據(jù)實(shí)訓(xùn)云平臺(tái)幫助高校和企業(yè)培養(yǎng)大數(shù)據(jù)領(lǐng)域業(yè)務(wù)專家、架構(gòu)師、開(kāi)發(fā)和運(yùn)維工程師 -大數(shù)據(jù)實(shí)訓(xùn)課程: FusionInsight HD海量數(shù)據(jù)導(dǎo)入和導(dǎo)出、分布式文件系統(tǒng)HDFS、分布式數(shù)據(jù)庫(kù)HBase客戶端及表操作、分布式數(shù)據(jù)倉(cāng)庫(kù)Hive的常用HQL語(yǔ)句查等。 -云上大數(shù)據(jù)實(shí)訓(xùn)平臺(tái):來(lái)自:百科系統(tǒng)面臨的基本挑戰(zhàn)并未發(fā)生重大變化。本課程包含數(shù)據(jù)倉(cāng)庫(kù)、維度建模、事態(tài)表、建模表、總線矩陣、緩慢變化維等多個(gè)數(shù)據(jù)倉(cāng)庫(kù)核心內(nèi)容,適合數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)師、工程師等大數(shù)據(jù)愛(ài)好者參與學(xué)習(xí)。 課程目標(biāo) 1.了解數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng)和維度模型: 對(duì)數(shù)據(jù)倉(cāng)庫(kù)和維度模型的基本知識(shí)和建設(shè)方法論 2.了解維度模型:掌握維度表和事實(shí)表的概念和設(shè)計(jì)方法來(lái)自:百科[ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開(kāi)啟云上之旅免費(fèi) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉(cāng)庫(kù)DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí) 數(shù)據(jù)倉(cāng)庫(kù)DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉(cāng)庫(kù)DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉(cāng)庫(kù)DWS提升數(shù)據(jù)分析性能實(shí)現(xiàn)分析決策一體化案例來(lái)自:百科
- HDFS官網(wǎng)翻譯——HDFS 架構(gòu)指南(二)
- HDFS官網(wǎng)翻譯——HDFS 架構(gòu)指南(三)
- Apache Hadoop HDFS 架構(gòu)
- HDFS官網(wǎng)翻譯——HDFS 架構(gòu)指南(一)
- HDFS官網(wǎng)翻譯——HDFS 架構(gòu)指南(四)
- 數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)示例
- Hadoop學(xué)習(xí)之HDFS架構(gòu)(二)
- Hadoop學(xué)習(xí)之HDFS架構(gòu)(一)
- HDFS的架構(gòu)及寫入流程。
- 二、HDFS基本架構(gòu)和shell操作
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)產(chǎn)品架構(gòu)_技術(shù)特點(diǎn)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶案例_GaussDB(DWS)
- GeminiDB Cassandra 接口