- 數(shù)據(jù)倉庫分層sql語句 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉庫 和Hadoop大數(shù)據(jù)平臺(tái)對(duì)比 數(shù)據(jù)倉庫和Hadoop大數(shù)據(jù)平臺(tái)對(duì)比 時(shí)間:2020-09-24 14:45:50 廣義上來說,Hadoop大數(shù)據(jù)平臺(tái)也可以看做是新一代的數(shù)據(jù)倉庫系統(tǒng),它也具有很多現(xiàn)代數(shù)據(jù)倉庫的特征,也被企業(yè)所廣泛使用。因?yàn)镸PP架構(gòu)的可來自:百科華為云計(jì)算 云知識(shí) 什么是數(shù)據(jù)倉庫服務(wù) GaussDB (DWS)? 什么是數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)? 時(shí)間:2024-03-30 09:53:49 數(shù)據(jù)倉庫 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉庫DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí) 數(shù)據(jù)倉庫DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例來自:百科
- 數(shù)據(jù)倉庫分層sql語句 相關(guān)內(nèi)容
-
。優(yōu)化目標(biāo)是:在編譯階段,根據(jù)查詢語句中涉及到的表和查詢條件,計(jì)算出產(chǎn)生中間結(jié)果少的高效join順序,從而減少查詢時(shí)間和資源消耗。 Hive中實(shí)現(xiàn)CBO的總體過程如下: Hive使用開源組件Apache Calcite實(shí)現(xiàn)CBO。首先SQL語句轉(zhuǎn)化成Hive的AST,然后轉(zhuǎn)成Ca來自:專題幫助文檔 數(shù)據(jù)湖探索 功能簡(jiǎn)介 提供基本的數(shù)據(jù)查詢功能和分析功能: SQL查詢功能:使用標(biāo)準(zhǔn)的SQL語句查詢分析數(shù)據(jù)。 Flink SQL在線分析功能:支持Window、Join等聚合函數(shù)、地理函數(shù)、CEP函數(shù)等,用SQL表達(dá)業(yè)務(wù)邏輯,簡(jiǎn)便快捷實(shí)現(xiàn)業(yè)務(wù)。 Spark計(jì)算特性:用戶可通過來自:專題
- 數(shù)據(jù)倉庫分層sql語句 更多內(nèi)容
-
據(jù)庫和 DLI 表,是向DLI導(dǎo)入數(shù)據(jù)的必備條件,體現(xiàn)用戶數(shù)據(jù)存儲(chǔ)在DLI中的數(shù)據(jù)量。 SQL作業(yè) 在SQL作業(yè)編輯器執(zhí)行的SQL語句、導(dǎo)入數(shù)據(jù)和導(dǎo)出數(shù)據(jù)等操作,在系統(tǒng)中對(duì)應(yīng)的執(zhí)行實(shí)體,稱之為SQL作業(yè)。 Spark作業(yè) Spark作業(yè)是指用戶通過可視化界面和RESTful API提交的作業(yè),支持提交Spark來自:百科分析場(chǎng)景。 數(shù)據(jù)倉庫遷移 數(shù)據(jù)倉庫是企業(yè)的重要數(shù)據(jù)分析系統(tǒng),隨著業(yè)務(wù)量的增長(zhǎng),自建數(shù)倉性能逐漸不能滿足實(shí)際要求,同時(shí)擴(kuò)展性差、成本高,也使擴(kuò)容極為困難。DWS作為云上企業(yè)級(jí)數(shù)據(jù)倉庫,具備高性能、低成本、易擴(kuò)展等特性,滿足大數(shù)據(jù)時(shí)代企業(yè)數(shù)據(jù)倉庫業(yè)務(wù)訴求。 圖1數(shù)據(jù)倉庫遷移 優(yōu)勢(shì) 平滑遷移來自:百科TeraData數(shù)據(jù)倉庫架構(gòu)及特點(diǎn)介紹 TeraData數(shù)據(jù)倉庫架構(gòu)及特點(diǎn)介紹 時(shí)間:2021-03-03 11:43:26 數(shù)據(jù)倉庫 數(shù)據(jù)庫 Teradata數(shù)據(jù)倉庫擁有全球領(lǐng)先的技術(shù),其主要軟件和硬件產(chǎn)品包括:Teradata數(shù)據(jù)庫、Teradata數(shù)據(jù)倉庫軟件、企業(yè)數(shù)據(jù)倉庫、動(dòng)態(tài)企業(yè)數(shù)據(jù)倉庫、數(shù)據(jù)倉庫專用平臺(tái)。來自:百科更多精彩課程、實(shí)驗(yàn)、微認(rèn)證,盡在華為云學(xué)院 數(shù)據(jù)倉庫服務(wù) 數(shù)據(jù)倉庫服務(wù)基于華為 FusionInsight LibrA企業(yè)級(jí)數(shù)據(jù)倉庫內(nèi)核,提供即開即用、可擴(kuò)展且完全托管的分析型數(shù)據(jù)庫服務(wù)。兼容PostgreSQL生態(tài),您可基于標(biāo)準(zhǔn)SQL,結(jié)合商業(yè)智能工具,經(jīng)濟(jì)高效地挖掘和分析海量數(shù)據(jù)。來自:百科華為云Stack 提供FusionInsight MRS 云原生 數(shù)據(jù)湖 (以下簡(jiǎn)稱“FusionInsight MRS”),采用“一湖+多樣集群+數(shù)據(jù)智能”分層建設(shè),幫助企業(yè)實(shí)現(xiàn)現(xiàn)代數(shù)據(jù)棧構(gòu)建。 湖倉一體是構(gòu)建現(xiàn)代數(shù)據(jù)棧的關(guān)鍵 IDC調(diào)研顯示,大數(shù)據(jù)分析已在數(shù)字化轉(zhuǎn)型戰(zhàn)略中成為第一要?jiǎng)?wù)。今年1月發(fā)來自:百科桶是是 OBS 中存儲(chǔ)對(duì)象的容器。 數(shù)據(jù)倉庫服務(wù)(DWS):數(shù)據(jù)倉庫服務(wù)(Data Warehouse Service)是一種基于公有云基礎(chǔ)架構(gòu)和平臺(tái)的在線數(shù)據(jù)處理數(shù)據(jù)庫,提供即開即用、可擴(kuò)展且完全托管的分析型數(shù)據(jù)庫服務(wù)。DWS是基于華為融合數(shù)據(jù)倉庫GaussDB產(chǎn)品的云原生服務(wù),兼容標(biāo)準(zhǔn)ANSI來自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉庫發(fā)展現(xiàn)狀及發(fā)展趨勢(shì) 數(shù)據(jù)倉庫發(fā)展現(xiàn)狀及發(fā)展趨勢(shì) 時(shí)間:2021-03-03 14:09:48 數(shù)據(jù)倉庫 數(shù)據(jù)倉庫是指從業(yè)務(wù)數(shù)據(jù)中創(chuàng)建信息數(shù)據(jù)庫,并針對(duì)決策和分析進(jìn)行優(yōu)化。華為云數(shù)據(jù)倉庫服務(wù)實(shí)時(shí)、簡(jiǎn)單、安全可信的企業(yè)級(jí)融合數(shù)據(jù)倉庫,可借助DWS Expr來自:百科GaussDB索引 GaussDB發(fā)展 GaussDB工具 GaussDB學(xué)習(xí) GaussDB的優(yōu)勢(shì) 登錄數(shù)據(jù)庫 免費(fèi) 云數(shù)據(jù)庫 MySQL 免費(fèi)的MySQL云數(shù)據(jù)庫 MySQL數(shù)據(jù)庫的特點(diǎn) 連接 GaussDB數(shù)據(jù)庫 優(yōu)質(zhì)文章錦集 產(chǎn)品動(dòng)態(tài) 華為云GaussDB助力MetaERP構(gòu)建“收入成本”產(chǎn)品,高效支撐支撐華為多業(yè)務(wù)來自:專題查詢性能相比原有數(shù)據(jù)庫提升數(shù)十倍; 標(biāo)準(zhǔn)SQL,業(yè)務(wù)平滑遷移。 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)證,盡在華為云學(xué)院 數(shù)據(jù)倉庫服務(wù) 數(shù)據(jù)倉庫服務(wù)基于華為FusionInsight LibrA企業(yè)級(jí)數(shù)據(jù)倉庫內(nèi)核,提供即開即用、可擴(kuò)展且完全托管的分析型數(shù)據(jù)庫服務(wù)。兼容PostgreSQL生態(tài),您可基于標(biāo)準(zhǔn)SQL,結(jié)合來自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 時(shí)間:2021-03-08 14:54:32 數(shù)據(jù)倉庫 數(shù)據(jù)倉庫服務(wù)(Data Warehouse Service,簡(jiǎn)稱DWS)是一種即開即用、安全可靠的在線數(shù)據(jù)倉庫服務(wù),為用戶提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。來自:百科華為云計(jì)算 云知識(shí) 云上數(shù)據(jù)倉庫打造案例 實(shí)現(xiàn)工程智慧營銷 云上數(shù)據(jù)倉庫打造案例 實(shí)現(xiàn)工程智慧營銷 時(shí)間:2021-03-05 15:15:14 數(shù)據(jù)倉庫 客戶痛點(diǎn): 數(shù)據(jù)增長(zhǎng)迅速,已有存量數(shù)據(jù)5TB,計(jì)劃存儲(chǔ)3年約20TB數(shù)據(jù); 查詢?nèi)蝿?wù)在MySQL耗時(shí)長(zhǎng),部分跑不出結(jié)果,MongoDB數(shù)據(jù)無法做復(fù)雜關(guān)聯(lián)分析;來自:百科系統(tǒng)面臨的基本挑戰(zhàn)并未發(fā)生重大變化。本課程包含數(shù)據(jù)倉庫、維度建模、事態(tài)表、建模表、總線矩陣、緩慢變化維等多個(gè)數(shù)據(jù)倉庫核心內(nèi)容,適合數(shù)據(jù)倉庫架構(gòu)師、工程師等大數(shù)據(jù)愛好者參與學(xué)習(xí)。 課程目標(biāo) 1.了解數(shù)據(jù)倉庫系統(tǒng)和維度模型: 對(duì)數(shù)據(jù)倉庫和維度模型的基本知識(shí)和建設(shè)方法論 2.了解維度模型:掌握維度表和事實(shí)表的概念和設(shè)計(jì)方法來自:百科16:46:24 數(shù)據(jù)倉庫 數(shù)據(jù)倉庫是指從業(yè)務(wù)數(shù)據(jù)中創(chuàng)建信息數(shù)據(jù)庫,并針對(duì)決策和分析進(jìn)行優(yōu)化。華為云數(shù)據(jù)倉庫服務(wù)實(shí)時(shí)、簡(jiǎn)單、安全可信的企業(yè)級(jí)融合數(shù)據(jù)倉庫,可借助DWS Express將查詢分析擴(kuò)展至數(shù)據(jù)湖?;谌A為GaussDB產(chǎn)品的云原生服務(wù),兼容標(biāo)準(zhǔn)SQL和PostgreSQL/Oracle生態(tài)。來自:百科
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)智融合計(jì)算服務(wù)
- 數(shù)據(jù)倉庫服務(wù) DWS
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源
- 數(shù)據(jù)倉庫服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉庫服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉庫服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)兼容性