- 實(shí)時(shí)數(shù)據(jù)倉(cāng)庫(kù)的案例 內(nèi)容精選 換一換
-
數(shù)據(jù)統(tǒng)一分析、管理效果顯著,節(jié)約50%數(shù)據(jù)處理時(shí)間; 降低開發(fā)、運(yùn)維投入,成本下降50%; 解決原有系統(tǒng)數(shù)據(jù)查詢慢或沒結(jié)果的問題。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴來(lái)自:百科安全可靠的在線 數(shù)據(jù)倉(cāng)庫(kù) 服務(wù),為用戶提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。 助力某高校打破數(shù)據(jù)孤島,實(shí)現(xiàn)數(shù)據(jù)綜合分析,性能提升10倍 客戶痛點(diǎn): 【數(shù)據(jù)分散】:現(xiàn)有業(yè)務(wù)系統(tǒng)部署在不同環(huán)境,包括華為云和用戶本地IDC,不能統(tǒng)一分析; 【數(shù)據(jù)量大】:數(shù)據(jù)量不斷增大,查詢性能下降; 【業(yè)務(wù)來(lái)自:百科
- 實(shí)時(shí)數(shù)據(jù)倉(cāng)庫(kù)的案例 相關(guān)內(nèi)容
-
ght LibrA企業(yè)級(jí)數(shù)據(jù)倉(cāng)庫(kù)內(nèi)核,提供即開即用、可擴(kuò)展且完全托管的分析型數(shù)據(jù)庫(kù)服務(wù)。兼容PostgreSQL生態(tài),您可基于標(biāo)準(zhǔn)SQL,結(jié)合商業(yè)智能工具,經(jīng)濟(jì)高效地挖掘和分析海量數(shù)據(jù)。 報(bào)名學(xué)習(xí) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉(cāng)庫(kù)DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí)來(lái)自:百科利用DWS進(jìn)行數(shù)據(jù)清洗加工,支持?jǐn)?shù)據(jù)更新; 利用DWS的標(biāo)準(zhǔn)SQL實(shí)現(xiàn)數(shù)據(jù)復(fù)雜關(guān)聯(lián)查詢。 客戶價(jià)值: 數(shù)據(jù)處理耗時(shí)從1天降至3個(gè)小時(shí); 開發(fā)人員基于SQL語(yǔ)言可快速開發(fā)分析應(yīng)用,同時(shí)將可分析維度從2-3個(gè)擴(kuò)展為5-10個(gè),擴(kuò)充業(yè)務(wù)范圍; 在DWS中維護(hù)維度數(shù)據(jù),再更新ES中數(shù)據(jù),降低了數(shù)據(jù)更新的工作量。 文中課程來(lái)自:百科
- 實(shí)時(shí)數(shù)據(jù)倉(cāng)庫(kù)的案例 更多內(nèi)容
-
按需付費(fèi):DWS按實(shí)際使用量和使用時(shí)長(zhǎng)計(jì)費(fèi)。您需要支付的費(fèi)率很低,只需為實(shí)際消耗的資源付費(fèi)。 門檻低:您無(wú)需前期投入較多固定成本,可以從低規(guī)格的數(shù)據(jù)倉(cāng)庫(kù)實(shí)例起步,以后隨時(shí)根據(jù)業(yè)務(wù)情況彈性伸縮所需資源,按需開支。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來(lái)自:百科隨著IT、信息技術(shù)的發(fā)展和進(jìn)步,數(shù)據(jù)資源已經(jīng)成為企業(yè)的核心資源。整合數(shù)據(jù)資源,構(gòu)建大數(shù)據(jù)平臺(tái),發(fā)現(xiàn)數(shù)據(jù)價(jià)值,成為企業(yè)經(jīng)營(yíng)的新趨勢(shì)和迫切訴求。而如何從海量數(shù)據(jù)中快速挖掘“價(jià)值”,成為助力客戶實(shí)現(xiàn)預(yù)測(cè)性分析的關(guān)鍵要素。 增強(qiáng)型ETL和實(shí)時(shí)BI分析 數(shù)據(jù)倉(cāng)庫(kù)在整個(gè)BI系統(tǒng)中起到了支柱的角色,更是來(lái)自:百科MySQL實(shí)時(shí)遷移和實(shí)時(shí)同步選擇對(duì)象為例,如圖: 圖3 實(shí)時(shí)遷移 圖4 實(shí)時(shí)同步 4.3 功能特性不同 對(duì)比項(xiàng) 實(shí)時(shí)遷移 實(shí)時(shí)同步 支持?jǐn)?shù)據(jù)庫(kù)引擎 支持多種數(shù)據(jù)庫(kù)之間的數(shù)據(jù)遷移,不同數(shù)據(jù)庫(kù)的支持 支持多種數(shù)據(jù)庫(kù)類型的實(shí)時(shí)同步,且支持多個(gè)源數(shù)據(jù)庫(kù)到同一個(gè)目標(biāo)數(shù)據(jù)庫(kù)之間的實(shí)時(shí)同步 功能特性來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)DWS冷熱數(shù)據(jù)分離 數(shù)據(jù)倉(cāng)庫(kù)DWS冷熱數(shù)據(jù)分離 時(shí)間:2021-03-05 15:08:32 數(shù)據(jù)倉(cāng)庫(kù) DWS將 OBS 上存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù)映射為外部表,從而利用數(shù)據(jù)庫(kù)SQL引擎的能力對(duì)OBS上的數(shù)據(jù)進(jìn)行分析。DWS數(shù)據(jù)倉(cāng)庫(kù) SQL On OBS,冷熱數(shù)據(jù)分離,歷史數(shù)據(jù)查詢免搬遷。來(lái)自:百科面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開發(fā)者,致力于讓云無(wú)處不在,讓智能無(wú)所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊(cè)一元域名華為 云桌面 [ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi)來(lái)自:百科隨著數(shù)據(jù)庫(kù)技術(shù)和分布式技術(shù)的長(zhǎng)足發(fā)展,數(shù)據(jù)倉(cāng)庫(kù)也朝著分布式數(shù)據(jù)庫(kù)的架構(gòu)演進(jìn)。目前比較流行的分布式數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)是MPP(Massive-Parallel Processing)架構(gòu)。MPP架構(gòu)特性如下: MPP架構(gòu)的數(shù)據(jù)倉(cāng)庫(kù)一般由多個(gè)對(duì)等的數(shù)據(jù)計(jì)算節(jié)點(diǎn)構(gòu)成。 MPP架構(gòu)的數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)被按照某來(lái)自:百科華為云計(jì)算 云知識(shí) 什么是數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB (DWS)? 什么是數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)? 時(shí)間:2024-03-30 09:53:49 數(shù)據(jù)倉(cāng)庫(kù) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉(cāng)庫(kù)DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí) 數(shù)據(jù)倉(cāng)庫(kù)DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例來(lái)自:百科用熟悉的SQL語(yǔ)言即可訪問所有數(shù)據(jù)。 實(shí)時(shí)交互分析 針對(duì)即時(shí)的分析需求,分析人員可實(shí)時(shí)從大數(shù)據(jù)平臺(tái)中獲取信息。 彈性伸縮 增加節(jié)點(diǎn),即可擴(kuò)展系統(tǒng)的數(shù)據(jù)存儲(chǔ)能力和查詢分析的性能,可支持PB級(jí)數(shù)據(jù)的存儲(chǔ)和計(jì)算。 增強(qiáng)型ETL和實(shí)時(shí)BI分析 數(shù)據(jù)倉(cāng)庫(kù)在整個(gè)BI系統(tǒng)中起到了支柱的角色,更來(lái)自:百科采用Apache Flink的Dataflow模型,完全的實(shí)時(shí)計(jì)算框架。采用高性能計(jì)算資源,從用戶自建的Kafka、 MRS -Kafka、DMS-Kafka消費(fèi)數(shù)據(jù),單SPU每秒吞吐1千~2萬(wàn)條消息,不同場(chǎng)景的吞吐量有差異。 應(yīng)用場(chǎng)景 實(shí)時(shí)流分析場(chǎng)景 提供易用、低時(shí)延、高吞吐的實(shí)時(shí)流分析服務(wù)。支持Stream來(lái)自:百科調(diào)用接口前,您需要提前獲取到地區(qū)和終端節(jié)點(diǎn),即下文中的Endpoint值。 最佳實(shí)踐 本實(shí)踐使用DRS的實(shí)時(shí)同步功能將本地Oracle數(shù)據(jù)庫(kù)實(shí)時(shí)遷移至華為云GaussDB。通過全量+增量同步,實(shí)現(xiàn)源數(shù)據(jù)庫(kù)Oracle和目標(biāo)數(shù)據(jù)庫(kù)GaussDB的數(shù)據(jù)長(zhǎng)期同步。 總體性能調(diào)優(yōu)思路 GaussDB的總體性能調(diào)優(yōu)思路為性來(lái)自:專題
- GaussDB(DWS)構(gòu)建實(shí)時(shí)數(shù)據(jù)倉(cāng)庫(kù)的最佳實(shí)踐
- Canal實(shí)時(shí)監(jiān)控案例
- GaussDB(DWS)數(shù)據(jù)倉(cāng)庫(kù):通過實(shí)時(shí)數(shù)據(jù)倉(cāng)庫(kù)實(shí)現(xiàn)實(shí)時(shí)分析的強(qiáng)大能力【綻放吧!GaussDB(DWS)云原生數(shù)倉(cāng)】
- MongoDB 實(shí)時(shí)分析案例
- 【文末彩蛋】數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)單點(diǎn)性能案例集錦
- 數(shù)據(jù)倉(cāng)庫(kù)的分層
- 【案例分享】實(shí)時(shí)支撐千億數(shù)據(jù),高效出行的背后全因有TA
- 實(shí)時(shí)監(jiān)測(cè)與控制:STM32在智慧油田中的應(yīng)用案例
- GaussDB(DWS)性能調(diào)優(yōu):實(shí)時(shí)場(chǎng)景下的性能跳變問題案例
- 8+ 典型分析場(chǎng)景,25+ 標(biāo)桿案例,Apache Doris 和 SelectDB 精選案例集(2024版)電子版上線
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- GeminiDB Cassandra 接口
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 華為云數(shù)據(jù)湖探索服務(wù) DLI
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- 實(shí)時(shí)語(yǔ)音識(shí)別
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)