- 分布式數(shù)據(jù)倉庫hive教材 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) Hive Hive 時(shí)間:2020-10-30 15:45:46 Hive是建立在Hadoop上的 數(shù)據(jù)倉庫 基礎(chǔ)構(gòu)架。它提供了一系列的工具,可以用來進(jìn)行數(shù)據(jù)提取轉(zhuǎn)化加載(ETL),這是一種可以存儲(chǔ)、查詢和分析存儲(chǔ)在Hadoop中的大規(guī)模數(shù)據(jù)的機(jī)制。Hive定義了簡(jiǎn)單的類來自:百科
- 分布式數(shù)據(jù)倉庫hive教材 相關(guān)內(nèi)容
-
化結(jié)果。 Hive與其他組件的關(guān)系 Hive與HDFS組件的關(guān)系 Hive是Apache的Hadoop項(xiàng)目的子項(xiàng)目,Hive利用HDFS作為其文件存儲(chǔ)系統(tǒng)。Hive通過解析和計(jì)算處理結(jié)構(gòu)化的數(shù)據(jù),Hadoop HDFS則為Hive提供了高可靠性的底層存儲(chǔ)支持。Hive數(shù)據(jù)庫中的所有數(shù)據(jù)文件都可以存儲(chǔ)在Hadoop來自:專題GaussDB (DWS) 與Hive的差別 GaussDB(DWS) 與Hive的差別 時(shí)間:2020-09-24 14:53:27 GaussDB(DWS)與Hive在功能上存在一定的差異,主要體現(xiàn)在以下幾個(gè)方面: Hive是基于Hadoop MapReduce的數(shù)據(jù)倉庫,GaussDB(來自:百科
- 分布式數(shù)據(jù)倉庫hive教材 更多內(nèi)容
-
隨著數(shù)據(jù)庫技術(shù)和分布式技術(shù)的長(zhǎng)足發(fā)展,數(shù)據(jù)倉庫也朝著分布式數(shù)據(jù)庫的架構(gòu)演進(jìn)。目前比較流行的分布式數(shù)據(jù)倉庫架構(gòu)是MPP(Massive-Parallel Processing)架構(gòu)。MPP架構(gòu)特性如下: MPP架構(gòu)的數(shù)據(jù)倉庫一般由多個(gè)對(duì)等的數(shù)據(jù)計(jì)算節(jié)點(diǎn)構(gòu)成。 MPP架構(gòu)的數(shù)據(jù)倉庫中的數(shù)據(jù)被來自:百科
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉庫服務(wù) 數(shù)據(jù)倉庫服務(wù) 時(shí)間:2020-12-17 10:05:04 數(shù)據(jù)倉庫服務(wù)基于華為 FusionInsight LibrA企業(yè)級(jí)數(shù)據(jù)倉庫內(nèi)核,提供即開即用、可擴(kuò)展且完全托管的分析型數(shù)據(jù)庫服務(wù)。兼容PostgreSQL生態(tài),您可基于標(biāo)準(zhǔn)SQL,結(jié)合商業(yè)來自:百科
API,支持第三方系統(tǒng)調(diào)用和集成。 高效率 TOP CDM 任務(wù)基于分布式計(jì)算框架,自動(dòng)將任務(wù)切分為獨(dú)立的子任務(wù)并行執(zhí)行,能夠極大提高數(shù)據(jù)遷移的效率。針對(duì)Hive、HBase、MySQL、DWS(數(shù)據(jù)倉庫服務(wù))數(shù)據(jù)源,使用高效的數(shù)據(jù)導(dǎo)入接口導(dǎo)入數(shù)據(jù)。 CDM任務(wù)基于分布式計(jì)算框架,自動(dòng)將任務(wù)切分為獨(dú)立的子任務(wù)來自:專題
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 時(shí)間:2021-03-08 14:54:32 數(shù)據(jù)倉庫 數(shù)據(jù)倉庫服務(wù)(Data Warehouse Service,簡(jiǎn)稱DWS)是一種即開即用、安全可靠的在線數(shù)據(jù)倉庫服務(wù),為用戶提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。來自:百科
數(shù)據(jù)組件,支持 數(shù)據(jù)湖 、數(shù)據(jù)倉庫、BI、AI融合等能力。 云原生數(shù)據(jù)湖MRS(MapReduce Service)為客戶提供Hudi、ClickHouse、Spark、Flink、Kafka、HBase等Hadoop生態(tài)的高性能大數(shù)據(jù)組件,支持?jǐn)?shù)據(jù)湖、數(shù)據(jù)倉庫、BI、AI融合等能力。來自:專題
據(jù)應(yīng)用場(chǎng)景,將數(shù)據(jù)進(jìn)行結(jié)構(gòu)和邏輯的轉(zhuǎn)換,轉(zhuǎn)化成滿足業(yè)務(wù)目標(biāo)的數(shù)據(jù)模型。 基于預(yù)設(shè)的數(shù)據(jù)模型,使用易用SQL的數(shù)據(jù)分析,用戶可以選擇Hive(數(shù)據(jù)倉庫),SparkSQL以及Presto交互式查詢引擎。 5、數(shù)據(jù)呈現(xiàn)調(diào)度 用于數(shù)據(jù)分析結(jié)果的呈現(xiàn),并與 數(shù)據(jù)治理中心 DataArts S來自:專題
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 數(shù)據(jù)倉庫服務(wù) DWS
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源
- 數(shù)據(jù)倉庫服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 專屬計(jì)算集群
- 數(shù)據(jù)倉庫服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉庫服務(wù)客戶案例_GaussDB(DWS)
- 資源專屬服務(wù)