- hive數(shù)據(jù)倉(cāng)庫(kù)報(bào)表設(shè)計(jì) 內(nèi)容精選 換一換
-
程包含 數(shù)據(jù)倉(cāng)庫(kù) 、維度建模、事態(tài)表、建模表、總線矩陣、緩慢變化維等多個(gè)數(shù)據(jù)倉(cāng)庫(kù)核心內(nèi)容,適合數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)師、工程師等大數(shù)據(jù)愛好者參與學(xué)習(xí)。 課程目標(biāo) 1.了解數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng)和維度模型: 對(duì)數(shù)據(jù)倉(cāng)庫(kù)和維度模型的基本知識(shí)和建設(shè)方法論 2.了解維度模型:掌握維度表和事實(shí)表的概念和設(shè)計(jì)方法 3來(lái)自:百科來(lái)自:百科
- hive數(shù)據(jù)倉(cāng)庫(kù)報(bào)表設(shè)計(jì) 相關(guān)內(nèi)容
-
數(shù)據(jù)組件,支持 數(shù)據(jù)湖 、數(shù)據(jù)倉(cāng)庫(kù)、BI、AI融合等能力。 云原生數(shù)據(jù)湖 MRS (MapReduce Service)為客戶提供Hudi、ClickHouse、Spark、Flink、Kafka、HBase等Hadoop生態(tài)的高性能大數(shù)據(jù)組件,支持?jǐn)?shù)據(jù)湖、數(shù)據(jù)倉(cāng)庫(kù)、BI、AI融合等能力。來(lái)自:專題ORACLE數(shù)據(jù)倉(cāng)庫(kù) Sparxsystems Enterprise Architect Pro ORACLE數(shù)據(jù)倉(cāng)庫(kù) Sparxsystems Enterprise Architect Pro 快速直觀的建模與設(shè)計(jì)工具,完美的企業(yè)級(jí)可視化解決方案,分析,建模,測(cè)試和維護(hù)您的所有系統(tǒng),軟件,流程和架構(gòu)。來(lái)自:專題
- hive數(shù)據(jù)倉(cāng)庫(kù)報(bào)表設(shè)計(jì) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)設(shè)計(jì)的困難 數(shù)據(jù)庫(kù)設(shè)計(jì)的困難 時(shí)間:2021-06-02 09:37:09 數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)設(shè)計(jì)面臨的主要困難: 1. 熟悉數(shù)據(jù)庫(kù)的人員缺乏業(yè)務(wù)知識(shí)和行業(yè)知識(shí); 2. 熟悉業(yè)務(wù)知識(shí),了解業(yè)務(wù)流程的人往往缺乏對(duì)數(shù)據(jù)庫(kù)產(chǎn)品的了解,對(duì)數(shù)據(jù)庫(kù)設(shè)計(jì)流程也不熟悉; 3.來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)設(shè)計(jì)的概念 數(shù)據(jù)庫(kù)設(shè)計(jì)的概念 時(shí)間:2021-06-02 09:23:33 數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)設(shè)計(jì)是指對(duì)于一個(gè)給定的應(yīng)用環(huán)境,構(gòu)造優(yōu)化的數(shù)據(jù)庫(kù)邏輯模式和物理結(jié)構(gòu),并據(jù)此建立數(shù)據(jù)庫(kù)及其應(yīng)用系統(tǒng),使之能夠有效地存儲(chǔ)和管理數(shù)據(jù),滿足各種用戶的應(yīng)用需求。 文中課程來(lái)自:百科Spark SQL 數(shù)據(jù)治理中心 DataArts Studio MRS Hive SQL 通過(guò)MRS Hive SQL節(jié)點(diǎn)執(zhí)行數(shù)據(jù)開發(fā)模塊中預(yù)先定義的Hive SQL腳本。 數(shù)據(jù)開發(fā) 數(shù)據(jù)治理 中心 作業(yè)節(jié)點(diǎn)MRS Hive SQL 數(shù)據(jù)治理中心 DataArts Studio MRS Presto來(lái)自:專題永洪BI通過(guò)拖拽快速生成分析報(bào)表,可以由沒(méi)有技術(shù)背景的業(yè)務(wù)人員自服務(wù)完成,新建報(bào)表變更報(bào)表等需求均可在一天內(nèi)完成,幫助企業(yè)洞察數(shù)據(jù)背后的關(guān)聯(lián),趨勢(shì)和邏輯等,實(shí)現(xiàn)對(duì)數(shù)據(jù)的深度挖掘。 永洪BI通過(guò)拖拽快速生成分析報(bào)表,可以由沒(méi)有技術(shù)背景的業(yè)務(wù)人員自服務(wù)完成,新建報(bào)表變更報(bào)表等需求均可在一天內(nèi)完成,幫助企業(yè)洞察數(shù)據(jù)背后的關(guān)聯(lián)來(lái)自:專題源。 數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)庫(kù)的主要區(qū)別: 1、數(shù)據(jù)庫(kù)是面向事務(wù)的設(shè)計(jì),數(shù)據(jù)倉(cāng)庫(kù)是面向主題設(shè)計(jì)的。 2、數(shù)據(jù)庫(kù)一般存儲(chǔ)在線交易數(shù)據(jù),數(shù)據(jù)倉(cāng)庫(kù)存儲(chǔ)的一般是歷史數(shù)據(jù)。 3、數(shù)據(jù)庫(kù)設(shè)計(jì)是盡量避免冗余,數(shù)據(jù)倉(cāng)庫(kù)在設(shè)計(jì)是有意引入冗余。 4、數(shù)據(jù)庫(kù)是為捕獲數(shù)據(jù)而設(shè)計(jì),數(shù)據(jù)倉(cāng)庫(kù)是為分析數(shù)據(jù)而設(shè)計(jì)。 華為云來(lái)自:百科華為云計(jì)算 云知識(shí) 華為云網(wǎng)絡(luò)架構(gòu)設(shè)計(jì) 華為云網(wǎng)絡(luò)架構(gòu)設(shè)計(jì) 時(shí)間:2020-12-09 10:32:47 本課程覆蓋了HCIE認(rèn)證的華為云網(wǎng)絡(luò)部分內(nèi)容,包括區(qū)域間網(wǎng)絡(luò)互通,區(qū)域內(nèi)網(wǎng)絡(luò)服務(wù),以及各種混合組網(wǎng)能力和方案。 課程簡(jiǎn)介 本課程核心是講華為云上的網(wǎng)絡(luò)架構(gòu)設(shè)計(jì),以VPC為中心,講解了V來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)設(shè)計(jì)目標(biāo)的要求 數(shù)據(jù)庫(kù)設(shè)計(jì)目標(biāo)的要求 時(shí)間:2021-06-02 09:42:07 數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)設(shè)計(jì)的目標(biāo)一定要設(shè)定有時(shí)間范圍,無(wú)條件的目標(biāo)會(huì)導(dǎo)致范圍過(guò)大而失??; 合理的制定數(shù)據(jù)庫(kù)系統(tǒng)的目標(biāo)是非常有挑戰(zhàn)性的事情。目標(biāo)過(guò)高過(guò)大,會(huì)導(dǎo)致無(wú)法實(shí)現(xiàn)。目標(biāo)過(guò)小又無(wú)法讓客戶接受;來(lái)自:百科數(shù)據(jù)源的方式,可訪問(wèn)的數(shù)據(jù)源包括Hive、 CS V、Parquet、ORC、JSON和JDBC數(shù)據(jù)源,這些不同的數(shù)據(jù)源之間也可以實(shí)現(xiàn)互相操作。SparkSQL復(fù)用了Hive的前端處理邏輯和元數(shù)據(jù)處理模塊,使用SparkSQL可以直接對(duì)已有的Hive數(shù)據(jù)進(jìn)行查詢。 另外,SparkS來(lái)自:專題GaussDB(DWS)服務(wù)即開即用 相比以前動(dòng)輒長(zhǎng)達(dá)數(shù)月的數(shù)據(jù)倉(cāng)庫(kù)選型采購(gòu)過(guò)程,在公有云上開通使用數(shù)據(jù)倉(cāng)庫(kù)服務(wù)只需要數(shù)分鐘時(shí)間簡(jiǎn)化了企業(yè)用戶的購(gòu)買過(guò)程,使用數(shù)據(jù)倉(cāng)庫(kù)的方式,降低使用數(shù)據(jù)倉(cāng)庫(kù)的代價(jià)和門檻,讓數(shù)據(jù)倉(cāng)庫(kù)實(shí)實(shí)在在地走進(jìn)千萬(wàn)家大中小企業(yè),讓數(shù)據(jù)為企業(yè)的發(fā)展和決策提供其應(yīng)有的價(jià)值。來(lái)自:百科據(jù)應(yīng)用場(chǎng)景,將數(shù)據(jù)進(jìn)行結(jié)構(gòu)和邏輯的轉(zhuǎn)換,轉(zhuǎn)化成滿足業(yè)務(wù)目標(biāo)的數(shù)據(jù)模型。 基于預(yù)設(shè)的數(shù)據(jù)模型,使用易用SQL的數(shù)據(jù)分析,用戶可以選擇Hive(數(shù)據(jù)倉(cāng)庫(kù)),SparkSQL以及Presto交互式查詢引擎。 5、數(shù)據(jù)呈現(xiàn)調(diào)度 用于數(shù)據(jù)分析結(jié)果的呈現(xiàn),并與數(shù)據(jù)治理中心DataArts S來(lái)自:專題
- 使用 Hive 構(gòu)建數(shù)據(jù)倉(cāng)庫(kù)
- hive數(shù)據(jù)倉(cāng)庫(kù)的設(shè)計(jì),項(xiàng)目中分了幾層,都有什么
- 數(shù)據(jù)倉(cāng)庫(kù)技術(shù)與Hive入門
- 大數(shù)據(jù)倉(cāng)庫(kù)之Hive的部署
- 七十八、Hive數(shù)據(jù)倉(cāng)庫(kù)實(shí)際操作(操作測(cè)試)
- 一篇文章搞懂?dāng)?shù)據(jù)倉(cāng)庫(kù):數(shù)據(jù)倉(cāng)庫(kù)規(guī)范設(shè)計(jì)
- 大數(shù)據(jù)解決方案FAQ-OLAP組件介紹
- 數(shù)據(jù)中臺(tái)架構(gòu)與技術(shù)體系
- 數(shù)據(jù)倉(cāng)庫(kù)設(shè)計(jì)規(guī)范(更新中)
- 大數(shù)據(jù)物流項(xiàng)目:主題及報(bào)表開發(fā)(十二)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門
- 表格存儲(chǔ)服務(wù)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 智能數(shù)據(jù)洞察 DataArts Insight
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶案例_GaussDB(DWS)