- 流式計(jì)算框架 內(nèi)容精選 換一換
-
adoop HDFS分布式并行計(jì)算框架。Hive進(jìn)行數(shù)據(jù)分析時(shí),會(huì)將用戶提交的HQL語(yǔ)句解析成相應(yīng)的MapReduce任務(wù)并提交MapReduce執(zhí)行。 Hive與Tez的關(guān)系 Tez是Apache的開(kāi)源項(xiàng)目,它是一個(gè)支持有向無(wú)環(huán)圖的分布式計(jì)算框架,Hive使用Tez引擎進(jìn)行數(shù)據(jù)來(lái)自:專題業(yè)務(wù)流程監(jiān)控等場(chǎng)景,在數(shù)據(jù)輸入系統(tǒng)的過(guò)程中,對(duì)數(shù)據(jù)進(jìn)行處理。 例如在梯聯(lián)網(wǎng)行業(yè),智能電梯的數(shù)據(jù),實(shí)時(shí)傳入到 MRS 的流式集群中進(jìn)行實(shí)時(shí)告警。 圖3梯聯(lián)網(wǎng)行業(yè)低時(shí)延流式處理場(chǎng)景 該場(chǎng)景下MRS的優(yōu)勢(shì)如下所示。 實(shí)時(shí)數(shù)據(jù)采集:利用Flume實(shí)現(xiàn)實(shí)時(shí)數(shù)據(jù)采集,并提供豐富的采集和存儲(chǔ)連接方式。來(lái)自:百科
- 流式計(jì)算框架 相關(guān)內(nèi)容
-
HyperMPI是基于Open MPI 4.0.3和Open UCX 1.6.0,支持MPI-V3.1標(biāo)準(zhǔn)的并行計(jì)算API接口,新增了優(yōu)化的集合通信計(jì)算框架。HyperMPI對(duì)數(shù)據(jù)密集型和高性能計(jì)算提供了網(wǎng)絡(luò)加速能力,使能了節(jié)點(diǎn)間高速通信網(wǎng)絡(luò)和節(jié)點(diǎn)內(nèi)共享內(nèi)存機(jī)制,以及優(yōu)化的集合通信算法。 使用說(shuō)明來(lái)自:百科
- 流式計(jì)算框架 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 云數(shù)據(jù)遷移 有什么功能 云數(shù)據(jù)遷移有什么功能 時(shí)間:2020-09-18 15:37:34 CDM 服務(wù)基于分布式計(jì)算框架,利用并行化處理技術(shù),支持用戶穩(wěn)定高效地對(duì)海量數(shù)據(jù)進(jìn)行移動(dòng),實(shí)現(xiàn)不停服數(shù)據(jù)遷移,快速構(gòu)建所需的數(shù)據(jù)架構(gòu)。 產(chǎn)品功能 表/文件/整庫(kù)遷移 支持批來(lái)自:百科
儲(chǔ)、查詢和分析的統(tǒng)一平臺(tái),幫助企業(yè)快速構(gòu)建海量數(shù)據(jù)信息處理系統(tǒng),可解決各大企業(yè)的以下需求: 海量數(shù)據(jù)的分析與計(jì)算 海量數(shù)據(jù)的存儲(chǔ) 海量數(shù)據(jù)流式處理 MapReduce服務(wù) MRS MapReduce服務(wù)(MapReduce Service)提供租戶完全可控的企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù)來(lái)自:百科
高效率 TOP CDM任務(wù)基于分布式計(jì)算框架,自動(dòng)將任務(wù)切分為獨(dú)立的子任務(wù)并行執(zhí)行,能夠極大提高數(shù)據(jù)遷移的效率。針對(duì)Hive、HBase、MySQL、DWS( 數(shù)據(jù)倉(cāng)庫(kù) 服務(wù))數(shù)據(jù)源,使用高效的數(shù)據(jù)導(dǎo)入接口導(dǎo)入數(shù)據(jù)。 CDM任務(wù)基于分布式計(jì)算框架,自動(dòng)將任務(wù)切分為獨(dú)立的子任務(wù)并行執(zhí)行來(lái)自:專題
與本地?cái)?shù)據(jù)相互遷移。 產(chǎn)品優(yōu)勢(shì) 支持多種異構(gòu)數(shù)據(jù)源:支持近20種常用數(shù)據(jù)源,滿足數(shù)據(jù)在云上和云下的不同遷移場(chǎng)景。 遷移效率高:基于分布式計(jì)算框架進(jìn)行數(shù)據(jù)任務(wù)執(zhí)行和數(shù)據(jù)傳輸優(yōu)化,并針對(duì)特定數(shù)據(jù)源寫(xiě)入做了專項(xiàng)優(yōu)化,遷移效率高。 簡(jiǎn)單易用:免編程,向?qū)饺蝿?wù)開(kāi)發(fā)界面,通過(guò)簡(jiǎn)單配置幾分鐘即可完成遷移任務(wù)開(kāi)發(fā)。來(lái)自:百科
批量刪除彈性公網(wǎng)IPBatchDeletePublicIp 批量創(chuàng)建彈性公網(wǎng)IPBatchCreatePublicips 相關(guān)推薦 流式文件處理:技術(shù)原理 約束與限制:函數(shù)運(yùn)行資源限制 函數(shù)流簡(jiǎn)介:組件說(shuō)明 修訂記錄 流式文件處理:操作步驟 函數(shù)工作流 :同步執(zhí)行函數(shù) API概覽 創(chuàng)建ERP單據(jù)審批同步流 創(chuàng)建采購(gòu)申請(qǐng)審批同步流來(lái)自:百科
時(shí)間:2020-11-25 15:13:31 本視頻主要為您介紹 實(shí)時(shí)流計(jì)算服務(wù) 入門(mén)的教程指導(dǎo)。 場(chǎng)景描述: CS 服務(wù)是運(yùn)行在公有云上的實(shí)時(shí)流式大數(shù)據(jù)分析服務(wù),全托管的方式用戶無(wú)需感知計(jì)算集群,只需聚焦于Stream SQL業(yè)務(wù),即時(shí)執(zhí)行作業(yè),完全兼容Apache Flink API和Apache來(lái)自:百科
0時(shí)代。 移動(dòng)互聯(lián)網(wǎng)的發(fā)展,需要對(duì)海量,多樣化,高并發(fā)的數(shù)據(jù)進(jìn)行實(shí)時(shí)分析,交互式查詢。使大數(shù)據(jù)進(jìn)入了2.0時(shí)代。 當(dāng)前,物聯(lián)網(wǎng)的發(fā)展,需要對(duì)海量流式數(shù)據(jù),人工智能分析等提供毫秒級(jí)的低時(shí)延處理能力,所以我們正處在大數(shù)據(jù)3.0時(shí)代,需要更先進(jìn)的認(rèn)知計(jì)算。 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)來(lái)自:百科
析 時(shí)間:2021-06-17 14:58:31 數(shù)據(jù)庫(kù) GaussDB (DWS)在實(shí)時(shí)數(shù)據(jù)分析的應(yīng)用如下圖所示。分析過(guò)程有如下的特點(diǎn): 流式數(shù)據(jù)實(shí)時(shí)入庫(kù):IoT、互聯(lián)網(wǎng)等數(shù)據(jù)經(jīng)過(guò)流計(jì)算及AI服務(wù)處理后,可實(shí)時(shí)寫(xiě)入GaussDB(DWS)。 實(shí)時(shí)監(jiān)控與預(yù)測(cè):圍繞數(shù)據(jù)進(jìn)行分析和預(yù)測(cè)來(lái)自:百科
在線遷移是在業(yè)務(wù)不停機(jī)的情況下,完整地把對(duì)方數(shù)據(jù)庫(kù)搬過(guò)來(lái); 2. 實(shí)時(shí)同步是在以毫秒時(shí)延,將需要的數(shù)據(jù)一直同步,業(yè)務(wù)間共享; 3. 數(shù)據(jù)訂閱是把變化的數(shù)據(jù),流式地推送給下游業(yè)務(wù)讀取和消費(fèi); 4. 異地災(zāi)備是在異地做一份完整數(shù)據(jù)的保護(hù),以備災(zāi)難時(shí)恢復(fù)業(yè)務(wù); 5. 云上備份是將外部備份定期保存在云上,非實(shí)時(shí),成本低。來(lái)自:百科
、數(shù)據(jù)訂閱、流式計(jì)算等功能,最大程度減少研發(fā)和運(yùn)維的復(fù)雜度。 如何十分鐘快速上手時(shí)序數(shù)據(jù)庫(kù)?主流時(shí)序數(shù)據(jù)庫(kù)在線獲取。核心代碼,包括集群功能全部開(kāi)源。針對(duì)物聯(lián)網(wǎng)、車聯(lián)網(wǎng)、工業(yè)互聯(lián)網(wǎng)、IT運(yùn)維等設(shè)計(jì)和優(yōu)化的大數(shù)據(jù)平臺(tái)。快10倍以上的時(shí)序數(shù)據(jù)庫(kù)功能,提供緩存、數(shù)據(jù)訂閱、流式計(jì)算等功能,最大程度減少研發(fā)和運(yùn)維的復(fù)雜度。來(lái)自:專題
Kafka客戶端。 分布式消息服務(wù) Kafka 分布式消息服務(wù) Kafka 是一個(gè)高吞吐、高可用的消息中間件服務(wù),適用于構(gòu)建實(shí)時(shí)數(shù)據(jù)管道、流式數(shù)據(jù)處理、第三方解耦、流量削峰去谷等場(chǎng)景,具有大規(guī)模、高可靠、高并發(fā)訪問(wèn)、可擴(kuò)展且完全托管的特點(diǎn),是分布式應(yīng)用上云必不可少的重要組件 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面來(lái)自:百科
框架(如Spark、Hadoop、Hbase)在可定制的群集上處理和分析大數(shù)據(jù)集。借助公有云MRS,您可以為機(jī)器學(xué)習(xí)、圖形分析、數(shù)據(jù)轉(zhuǎn)換、流式處理數(shù)據(jù)以及您可以編寫(xiě)代碼的幾乎任何應(yīng)用程序運(yùn)行各種橫向擴(kuò)展的數(shù)據(jù)處理任務(wù)。您還可以將GaussDB(DWS)SQL on OBS 與MRS來(lái)自:百科
- Golang框架實(shí)戰(zhàn)-KisFlow流式計(jì)算框架(1)-概述
- Java中的大數(shù)據(jù)流式計(jì)算與Apache Kafka集成!
- 《大數(shù)據(jù)技術(shù)叢書(shū) Flink原理、實(shí)戰(zhàn)與性能優(yōu)化》—1.2.4 為什么會(huì)是Flink
- 《Flink原理、實(shí)戰(zhàn)與性能優(yōu)化》 —1.2.4 為什么會(huì)是Flink
- 《大數(shù)據(jù)技術(shù)叢書(shū)Flink原理、實(shí)戰(zhàn)與性能優(yōu)化》—1.2.4 為什么會(huì)是Flink
- 大數(shù)據(jù)Flink進(jìn)階(三):Flink核心特性
- Pandas高級(jí)數(shù)據(jù)處理:數(shù)據(jù)流式計(jì)算
- 聊聊我與流式計(jì)算的故事
- Flink從入門(mén)到精通100篇(十六)-—— Data Source 簡(jiǎn)介及如何自定義一個(gè)source
- 大數(shù)據(jù)Flink進(jìn)階(二):數(shù)據(jù)架構(gòu)的演變