- 經(jīng)典卷積神經(jīng)網(wǎng)絡(luò)案例 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 高空拋物檢測(cè)案例 高空拋物檢測(cè)案例 時(shí)間:2021-01-25 16:51:43 視頻檢測(cè) 視頻監(jiān)控 華為云好望商城高空拋物檢測(cè),服務(wù)商:北京博思廷; 在樓宇周圍部署華為云好望商城高空拋物檢測(cè)算法,將樓外立面由下至上的區(qū)域進(jìn)行實(shí)時(shí)監(jiān)測(cè),實(shí)現(xiàn)樓外立面監(jiān)測(cè)區(qū)域全覆來自:云商店
- 經(jīng)典卷積神經(jīng)網(wǎng)絡(luò)案例 相關(guān)內(nèi)容
-
- 經(jīng)典卷積神經(jīng)網(wǎng)絡(luò)案例 更多內(nèi)容
-
打手機(jī)智能檢測(cè)算法是基于人工智能技術(shù)領(lǐng)域中的深度學(xué)習(xí)技術(shù),結(jié)合大數(shù)據(jù),使用大量的人員打手機(jī)圖片數(shù)據(jù)采用監(jiān)督學(xué)習(xí)的方式進(jìn)行智能檢測(cè)訓(xùn)練。算法采用深度卷積神經(jīng)網(wǎng)絡(luò)提取數(shù)據(jù)中關(guān)鍵特征,忽略圖片數(shù)據(jù)中的不相關(guān)信息,并結(jié)合業(yè)務(wù)邏輯進(jìn)行推理判斷。 將訓(xùn)練完成后的算法加載到AI攝像機(jī)內(nèi)部,利用攝像機(jī)內(nèi)部A來自:云商店時(shí)間:2020-12-11 11:15:04 本課程基于華為云ModelArts一站式 AI開發(fā)平臺(tái) ,主要內(nèi)容包括基礎(chǔ)知識(shí)、經(jīng)典數(shù)據(jù)集和經(jīng)典算法的介紹,每章課程都是實(shí)戰(zhàn)案例,模型訓(xùn)練、測(cè)試、評(píng)估全流程覆蓋,配合代碼講解和課后作業(yè),幫助您掌握八大熱門AI領(lǐng)域的模型開發(fā)能力。 課程簡(jiǎn)介 本課來自:百科神將教你從0到1通關(guān) 圖像識(shí)別 ??!幫你實(shí)現(xiàn)當(dāng)下熱門的垃圾分類、自動(dòng)駕駛技術(shù)。 【賽事簡(jiǎn)介】 本次比賽為AI主題賽中的挑戰(zhàn)賽。選手可以使用卷積神經(jīng)網(wǎng)絡(luò)對(duì)生活中的街道場(chǎng)景進(jìn)行識(shí)別。選手可重復(fù)提交代碼,直到代碼完美為止。 【參賽對(duì)象】 對(duì)AI感興趣且年滿18歲的開發(fā)者均可報(bào)名參加。 【報(bào)名須知】來自:百科AI引擎用法; 掌握基于MXNet構(gòu)建 人臉識(shí)別 神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測(cè)試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。 實(shí)驗(yàn)摘要 操作前提:登錄華為云 1.實(shí)驗(yàn)準(zhǔn)備 2.案例配置信息填寫 3.導(dǎo)入基本工具庫 4.腳本入?yún)⒔馕?來自:百科取違規(guī)或者關(guān)鍵信息,包括踢、扔、拋物體等。 視頻質(zhì)量分析VQA 視頻質(zhì)量分析(Video Quality Analysis)是通過深度卷積神經(jīng)網(wǎng)絡(luò)算法識(shí)別視頻畫面質(zhì)量,將視頻畫面的質(zhì)量進(jìn)行歸類,從而過濾出清晰的高質(zhì)量視頻。 視頻 OCR :視頻OCR(Video Optical Character來自:百科物聯(lián)網(wǎng)數(shù)據(jù)顧名思義是由各種物聯(lián)網(wǎng)設(shè)備、傳感器產(chǎn)生的數(shù)據(jù)。與其他的數(shù)據(jù)相比,物聯(lián)網(wǎng)數(shù)據(jù)具有“大、小、高、底”四個(gè)特點(diǎn): “大”即物聯(lián)網(wǎng)數(shù)據(jù)體量大,我們經(jīng)常聽到的一個(gè)經(jīng)典的案例,即GE發(fā)動(dòng)機(jī)有成百上千個(gè)傳感器,毫秒級(jí)頻度產(chǎn)生各種數(shù)據(jù)。一次飛機(jī)的飛行就可以超過1TB的數(shù)據(jù)量。很多工業(yè)場(chǎng)景產(chǎn)生的數(shù)據(jù)量可能會(huì)更大。來自:百科
- 經(jīng)典卷積網(wǎng)絡(luò)--AlexNet
- 經(jīng)典卷積網(wǎng)絡(luò)--LeNet
- 經(jīng)典卷積網(wǎng)絡(luò)--InceptionNet
- 經(jīng)典卷積網(wǎng)絡(luò)--VGGNet
- 卷積神經(jīng)網(wǎng)絡(luò)
- 卷積神經(jīng)網(wǎng)絡(luò)
- 《探秘卷積神經(jīng)網(wǎng)絡(luò)的核心—卷積核》
- 卷積神經(jīng)網(wǎng)絡(luò)中卷積是什么為什么要使用卷積核運(yùn)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——1.7.2 案例數(shù)據(jù)
- Excel實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)