- 深度學(xué)習(xí)訓(xùn)練好的模型 內(nèi)容精選 換一換
-
用算法模型。幫助開發(fā)者便捷地使用華為AI使能平臺(tái)Mordelarts開發(fā)、迭代、發(fā)布和變現(xiàn)算法,模型。 人工智能市場(chǎng)的商品有: 藝賽旗機(jī)器人流程自動(dòng)化軟件 IS-RPA AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海來自:云商店
- 深度學(xué)習(xí)訓(xùn)練好的模型 相關(guān)內(nèi)容
-
于提高企業(yè)的物流效率和管理水平。3. 服務(wù)于智慧物流實(shí)訓(xùn)課程:Arpa WTP數(shù)字倉(cāng)庫(kù)實(shí)訓(xùn)平臺(tái)可以作為《倉(cāng)儲(chǔ)管理》等智慧物流實(shí)訓(xùn)課程的輔助工具。通過平臺(tái)的實(shí)訓(xùn)內(nèi)容,學(xué)生可以在實(shí)戰(zhàn)中學(xué)習(xí)和應(yīng)用所學(xué)知識(shí),提高實(shí)踐能力。4. 自動(dòng)評(píng)判與考核成績(jī):平臺(tái)具備自動(dòng)評(píng)判和考核成績(jī)的功能,可以根來自:專題專屬定制:根據(jù)場(chǎng)景數(shù)據(jù)自定制模型。 高效的行業(yè)算法 多行業(yè):積累10+行業(yè)/場(chǎng)景的預(yù)訓(xùn)練模型。 高精度:大部分模型的準(zhǔn)確率高于90%。 少數(shù)據(jù):訓(xùn)練所需的數(shù)據(jù)量更少。 智能標(biāo)注:提升標(biāo)注效率。 極致性能 依托ModelArts基礎(chǔ)平臺(tái),深度軟硬件協(xié)同。 資源秒級(jí)調(diào)度,按需使用。 訓(xùn)練任務(wù)性能提升30%。來自:百科
- 深度學(xué)習(xí)訓(xùn)練好的模型 更多內(nèi)容
-
語音識(shí)別 服務(wù)可以實(shí)現(xiàn)1分鐘以內(nèi)、不超過4MB的音頻到文字的轉(zhuǎn)換。對(duì)于用戶上傳的完整的錄音文件,系統(tǒng)通過處理,生成語音對(duì)應(yīng)文字內(nèi)容。 ASR優(yōu)勢(shì) 效果出眾 使用深度學(xué)習(xí)技術(shù),語音識(shí)別準(zhǔn)確率超過95%,在業(yè)界具有一定的技術(shù)優(yōu)勢(shì)。 穩(wěn)定可靠 成功應(yīng)用于各類場(chǎng)景,基于華為等企業(yè)客戶的長(zhǎng)期實(shí)踐,經(jīng)受過復(fù)雜場(chǎng)景考驗(yàn)。來自:百科
角色: IAM 最初提供的一種根據(jù)用戶的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件等。基于策略的授權(quán)是一種更加靈活的授權(quán)方式,能夠滿足企業(yè)對(duì)權(quán)限最小化的安全管控要求。來自:專題
WTP數(shù)字倉(cāng)庫(kù)實(shí)訓(xùn)平臺(tái),企業(yè)員工可以學(xué)習(xí)和掌握智慧物流數(shù)字化實(shí)踐技能。這些技能包括數(shù)字化倉(cāng)庫(kù)管理、智能物流系統(tǒng)操作等,有助于提高企業(yè)的物流效率和管理水平。3. 服務(wù)于智慧物流實(shí)訓(xùn)課程:Arpa WTP數(shù)字倉(cāng)庫(kù)實(shí)訓(xùn)平臺(tái)可以作為《倉(cāng)儲(chǔ)管理》等智慧物流實(shí)訓(xùn)課程的輔助工具。通過平臺(tái)的實(shí)訓(xùn)內(nèi)容,學(xué)來自:專題
,減少火災(zāi)隱患。 方案優(yōu)勢(shì) 1. 行業(yè)應(yīng)用上算法開發(fā)經(jīng)驗(yàn)積累豐富:算法會(huì)自動(dòng)利用相關(guān)先驗(yàn)知識(shí)對(duì)深度學(xué)習(xí)模型的檢測(cè)結(jié)果進(jìn)行判別,排除誤檢測(cè),準(zhǔn)確可靠。利用數(shù)字圖像處理技術(shù)和先進(jìn)的深度學(xué)習(xí)技術(shù),可對(duì)廚房進(jìn)行全天候智能監(jiān)測(cè)。 2. 針對(duì)客戶需求進(jìn)行定制化功能開發(fā):針對(duì)不同行業(yè)應(yīng)用需求,來自:云商店
360度用戶畫像:對(duì)學(xué)生學(xué)習(xí)進(jìn)行全流程跟蹤和能力刻畫。 智慧教學(xué)云平臺(tái)的特點(diǎn): l基于成果導(dǎo)向的教育理念 l企業(yè)級(jí)真實(shí)項(xiàng)目案例 l行業(yè)前沿課程體系 l領(lǐng)先行業(yè)的軟件工程標(biāo)準(zhǔn) l以大數(shù)據(jù)為支撐的智慧教學(xué)平臺(tái) l云上與本地結(jié)合的開放實(shí)驗(yàn)系統(tǒng) l實(shí)訓(xùn)內(nèi)容與實(shí)訓(xùn)環(huán)境同步供應(yīng) l線上線下結(jié)合的服務(wù)體系 云市場(chǎng)商品來自:云商店
- 《智能系統(tǒng)與技術(shù)叢書 深度學(xué)習(xí)實(shí)踐:基于Caffe的解析》—3.6使用訓(xùn)練好的模型進(jìn)行預(yù)測(cè)
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)中常用的生成模型
- 深度學(xué)習(xí)應(yīng)用篇-元學(xué)習(xí)[14]:基于優(yōu)化的元學(xué)習(xí)-MAML模型、LEO模型、Reptile模型
- 利用深度學(xué)習(xí)建立流失模型
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型