- 深度學(xué)習(xí)半精度模型存儲(chǔ) 內(nèi)容精選 換一換
-
端云協(xié)同推理 端云模型協(xié)同,解決網(wǎng)絡(luò)不穩(wěn)的場(chǎng)景,節(jié)省用戶帶寬。 端側(cè)設(shè)備可協(xié)同云側(cè)在線更新模型,快速提升端側(cè)精度。 端側(cè)對(duì)采集的數(shù)據(jù)進(jìn)行本地分析,大大減少上云數(shù)據(jù)流量,節(jié)約存儲(chǔ)成本。 統(tǒng)一技能開(kāi)發(fā)平臺(tái) 軟硬協(xié)同優(yōu)化,統(tǒng)一的Skill開(kāi)發(fā)框架,封裝基礎(chǔ)組件,支持常用深度學(xué)習(xí)模型。 跨平臺(tái)設(shè)計(jì)來(lái)自:百科圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能力,幫助客戶準(zhǔn)確識(shí)別和理解圖像內(nèi)容 圖像識(shí)別(Image Recognition),基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物來(lái)自:專題
- 深度學(xué)習(xí)半精度模型存儲(chǔ) 相關(guān)內(nèi)容
-
云知識(shí) 什么是產(chǎn)品模型 什么是產(chǎn)品模型 時(shí)間:2020-09-09 14:43:48 產(chǎn)品模型用于描述設(shè)備具備的能力和特性。開(kāi)發(fā)者通過(guò)定義產(chǎn)品模型,在 物聯(lián)網(wǎng)平臺(tái) 構(gòu)建一款設(shè)備的抽象模型,使平臺(tái)理解該款設(shè)備支持的服務(wù)、屬性、命令等信息,如顏色、開(kāi)關(guān)等。當(dāng)定義完一款產(chǎn)品模型后,在進(jìn)行注冊(cè)設(shè)來(lái)自:百科華為云計(jì)算 云知識(shí) 物理模型產(chǎn)出物 物理模型產(chǎn)出物 時(shí)間:2021-06-02 14:56:54 數(shù)據(jù)庫(kù) 在數(shù)據(jù)庫(kù)設(shè)計(jì)中,物理模型設(shè)計(jì)階段,需要產(chǎn)出: 物理數(shù)據(jù)模型; 物理模型命名規(guī)范; 物理數(shù)據(jù)模型設(shè)計(jì)說(shuō)明書; 生成DDL建表語(yǔ)句。 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)證,盡在?來(lái)自:百科
- 深度學(xué)習(xí)半精度模型存儲(chǔ) 更多內(nèi)容
-
題會(huì)進(jìn)行智能分撥。通過(guò)學(xué)習(xí)歷史工單構(gòu)建標(biāo)簽體系,運(yùn)用華為云自研的政務(wù)預(yù)訓(xùn)練語(yǔ)言模型,對(duì)工單內(nèi)容文本進(jìn)行推理識(shí)別,自動(dòng)分撥到對(duì)應(yīng)的處置單位,實(shí)現(xiàn)一鍵派遣。經(jīng)過(guò)某地實(shí)測(cè),已實(shí)現(xiàn)工單7×24小時(shí)全天候全流程自動(dòng)智能分撥,準(zhǔn)確率達(dá)到了90%,普通件辦件時(shí)間縮短了一半。 通過(guò)華為云Stac來(lái)自:百科
場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,CAE等;G系列適合于3D動(dòng)畫渲染,CAD等。 GPU加速云服務(wù)器(GPU Accelerated Cloud Server, GA CS )能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,CAE來(lái)自:專題
AI-Native自治,管理智能高效 AI-Native自治,管理智能高效 參數(shù)自調(diào)優(yōu) 當(dāng)前已經(jīng)覆蓋了500+重點(diǎn)參數(shù),通過(guò)深度強(qiáng)化學(xué)習(xí)與全局調(diào)優(yōu)算法,結(jié)合不同業(yè)務(wù)負(fù)載模型進(jìn)行針對(duì)性調(diào)優(yōu),相比DBA人工根據(jù)經(jīng)驗(yàn)調(diào)優(yōu),性能提升30%的同時(shí),耗費(fèi)時(shí)間從天下降到分鐘級(jí)。 智能索引推薦 通過(guò)啟發(fā)來(lái)自:專題
量結(jié)構(gòu)化數(shù)據(jù)、半結(jié)構(gòu)化數(shù)據(jù)以及時(shí)序數(shù)據(jù)的存儲(chǔ)和查詢應(yīng)用。 產(chǎn)品優(yōu)勢(shì) HBase原生接口:兼容原生HBase接口,架構(gòu)高可用,存儲(chǔ)和計(jì)算分離保證高可靠,內(nèi)核深度優(yōu)化。 集成OpenTSDB:集成OpenTSDB來(lái)支持時(shí)序數(shù)據(jù)的高效存儲(chǔ)與查詢。對(duì)OpenTSDB源碼深度優(yōu)化,性能較之社區(qū)OpenTSDB版本提升30%+。來(lái)自:百科
華為云計(jì)算 云知識(shí) 什么是安全控制模型 什么是安全控制模型 時(shí)間:2021-07-01 15:13:21 數(shù)據(jù)庫(kù)管理 數(shù)據(jù)庫(kù) 安全管理 數(shù)據(jù)庫(kù)安全 服務(wù) 安全控制 在數(shù)據(jù)庫(kù)應(yīng)用系統(tǒng)的不同層次提供對(duì)有意和無(wú)意損害行為的安全防范,例如: 加密存取數(shù)據(jù) -> 有意非法活動(dòng) 用戶身份驗(yàn)證,限制操作權(quán)限來(lái)自:百科
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科
面對(duì)應(yīng)用程序,將應(yīng)用程序的訪問(wèn)請(qǐng)求分發(fā)到存儲(chǔ)層,并接受存儲(chǔ)層返回的數(shù)據(jù)結(jié)果。 元數(shù)據(jù)區(qū)域:元數(shù)據(jù)區(qū)域負(fù)責(zé)存儲(chǔ)整個(gè)數(shù)據(jù)庫(kù)的所有元數(shù)據(jù)信息。 2)多模式 數(shù)據(jù)庫(kù)多模型多模型意味著同一數(shù)據(jù)庫(kù)支持多個(gè)存儲(chǔ)引擎,它們可以同時(shí)滿足應(yīng)用程序中結(jié)構(gòu)化,半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)的統(tǒng)一管理要求。 一般來(lái)自:百科
于非結(jié)構(gòu)化數(shù)據(jù)的深度學(xué)習(xí)模型開(kāi)發(fā)、訓(xùn)練、評(píng)估和發(fā)布,支持多種計(jì)算資源進(jìn)行模型開(kāi)發(fā)與訓(xùn)練,以及超參調(diào)優(yōu)、模型可視化工具等功能。數(shù)據(jù)標(biāo)注平臺(tái)提供高效率的獨(dú)立的數(shù)據(jù)標(biāo)注功能,支持多類型應(yīng)用場(chǎng)景、多人標(biāo)注、自動(dòng)標(biāo)注和批量標(biāo)注。模型工廠是模型的管理中心,支持模型入庫(kù)、模型上傳、格式轉(zhuǎn)換、版來(lái)自:專題
云知識(shí) 邏輯設(shè)計(jì)和邏輯模型 邏輯設(shè)計(jì)和邏輯模型 時(shí)間:2021-06-02 10:21:11 數(shù)據(jù)庫(kù) 邏輯設(shè)計(jì)階段是將概念模型轉(zhuǎn)化為具體的數(shù)據(jù)模型的過(guò)程。 按照概念設(shè)計(jì)階段建立的基本E-R圖,按選定的目標(biāo)數(shù)據(jù)模型(層次、網(wǎng)狀、關(guān)系、面向?qū)ο螅D(zhuǎn)換成相應(yīng)的邏輯模型。 對(duì)于關(guān)系型數(shù)據(jù)庫(kù)來(lái)自:百科
- 利用深度學(xué)習(xí)技術(shù)改進(jìn)地震解釋精度
- 利用深度學(xué)習(xí)技術(shù)改進(jìn)地震解釋精度
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 利用深度學(xué)習(xí)技術(shù)改進(jìn)地震解釋精度
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 利用深度學(xué)習(xí)建立流失模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型