- 大數(shù)據(jù)kafka 內(nèi)容精選 換一換
-
MRS 基于華為云 彈性云服務(wù)器 E CS 構(gòu)建的大數(shù)據(jù)集群,充分利用了其虛擬化層的高可靠、高安全的能力。 數(shù)據(jù)采集 數(shù)據(jù)采集層提供了數(shù)據(jù)接入到MRS集群的能力,包括Flume(數(shù)據(jù)采集)、Loader(關(guān)系型數(shù)據(jù)導(dǎo)入)、Kafka(高可靠消息隊(duì)列),支持各種數(shù)據(jù)源導(dǎo)入數(shù)據(jù)到大數(shù)據(jù)集群中。使用云數(shù)據(jù)遷移云服務(wù)也可以將外部數(shù)據(jù)導(dǎo)入至MRS集群中。來(lái)自:專題dis。 分布式緩存服務(wù)教程視頻 分布式緩存服務(wù)DCS 04:53 創(chuàng)建緩存實(shí)例 分布式緩存服務(wù)DCS 創(chuàng)建緩存實(shí)例 分布式緩存服務(wù)DCS 03:40 訪問(wèn)緩存實(shí)例 分布式緩存服務(wù)DCS 訪問(wèn)緩存實(shí)例 分布式緩存服務(wù)DCS 04:16 緩存實(shí)例日常維護(hù) 分布式緩存服務(wù)DCS 緩存實(shí)例日常維護(hù)來(lái)自:專題
- 大數(shù)據(jù)kafka 相關(guān)內(nèi)容
-
【云小課】不容錯(cuò)過(guò)!華為云新一代緩存“大咖”——云數(shù)據(jù)庫(kù) GaussDB (for Redis) 【云小課】不容錯(cuò)過(guò)!華為云新一代緩存“大咖”——云數(shù)據(jù)庫(kù) GaussDB(for Redis) 時(shí)間:2021-08-06 16:26:56 云小課 Redis 云數(shù)據(jù)庫(kù) 眾所周知,Redis是一來(lái)自:百科端加入消息隊(duì)列。 可以控制活動(dòng)的人數(shù) 可以緩解短時(shí)間內(nèi)高流量壓垮應(yīng)用。 日志處理 日志處理是指將消息隊(duì)列用在日志處理中,比如Kafka的應(yīng)用,解決大量日志傳輸?shù)膯?wèn)題。 消息通訊 消息通訊是指,消息隊(duì)列一般都內(nèi)置了高效的通信機(jī)制,因此也可以用在純的消息通訊。比如實(shí)現(xiàn)點(diǎn)對(duì)點(diǎn)消息隊(duì)列,或者聊天室等。來(lái)自:百科
- 大數(shù)據(jù)kafka 更多內(nèi)容
-
L語(yǔ)句、Spark作業(yè)或者Flink作業(yè)訪問(wèn)其他數(shù)據(jù)存儲(chǔ)服務(wù)并導(dǎo)入、查詢、分析處理其中的數(shù)據(jù),數(shù)據(jù)湖探索跨源連接的功能是打通數(shù)據(jù)源之間的網(wǎng)絡(luò)連接。 數(shù)據(jù)湖探索跨源連接的功能是打通數(shù)據(jù)源之間的網(wǎng)絡(luò)連接,目前 DLI 支持跨源連接訪問(wèn)的數(shù)據(jù)源包括:CloudTable HBase,CloudTable來(lái)自:專題
訪問(wèn)外部數(shù)據(jù)源數(shù)據(jù)的操作步驟。 本例以SQL作業(yè)訪問(wèn)RDS數(shù)據(jù)庫(kù)表為例,介紹DLI服務(wù)提交SQL作業(yè)訪問(wèn)外部數(shù)據(jù)源數(shù)據(jù)的操作步驟。 使用DLI提交SQL作業(yè)查詢RDS MySQL數(shù)據(jù) 常用的Spark SQL作業(yè)的語(yǔ)法 基礎(chǔ)的Spark SQL語(yǔ)法:數(shù)據(jù)庫(kù)相關(guān)語(yǔ)法、創(chuàng)建 OBS 表相來(lái)自:專題
華為云計(jì)算 云知識(shí) 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 時(shí)間:2020-12-14 10:07:11 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索是當(dāng)前深度學(xué)習(xí)最熱門(mén)的話題之一,已經(jīng)成為了一大研究潮流。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)、應(yīng)用和發(fā)展現(xiàn)狀。 課程簡(jiǎn)介 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)來(lái)自:百科
OBS、DIS、DAYU 圖3運(yùn)營(yíng)商大數(shù)據(jù)分析 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)具有大數(shù)據(jù)的相關(guān)特征,數(shù)據(jù)體量巨大,例如,全球衛(wèi)星遙感影像數(shù)據(jù)量達(dá)到PB級(jí)。數(shù)據(jù)種類多,有結(jié)構(gòu)化的遙感影像柵格數(shù)據(jù)、矢量數(shù)據(jù),非結(jié)構(gòu)化的空間位置數(shù)據(jù)、三維建模數(shù)據(jù);在大體量的地理大數(shù)據(jù)中,通過(guò)高效的挖掘工具來(lái)自:百科
部門(mén)的高效協(xié)同。 每逢大促,聰明的商家都會(huì)在商品名稱前加上“現(xiàn)貨秒發(fā)”幾個(gè)字,來(lái)強(qiáng)調(diào)現(xiàn)貨優(yōu)勢(shì)。的確,對(duì)于電商企業(yè)來(lái)說(shuō),備好充足的現(xiàn)貨,是迎戰(zhàn)大促最基本的操作。 壓力來(lái)到采購(gòu)部門(mén)這邊,大促期間庫(kù)存數(shù)據(jù)變化大,怎樣保證采購(gòu)在做備貨計(jì)劃時(shí),參考的庫(kù)存數(shù)據(jù)是最新數(shù)據(jù)? 基于石墨文檔支持多來(lái)自:云商店
- A(18) Kafka數(shù)據(jù)重復(fù)
- 大數(shù)據(jù)技術(shù)學(xué)習(xí)——Kafka
- Kafka生產(chǎn)發(fā)送數(shù)據(jù)失敗
- 大數(shù)據(jù)之 kafka 入門(mén)
- DRS數(shù)據(jù)同步到KAFKA原理
- A(10) Kafka丟不丟數(shù)據(jù)
- Apache Kafka-使用Kafak Tool 查看Kafka中的數(shù)據(jù)
- kafka 有幾種數(shù)據(jù)保留的策略?
- Kafka的監(jiān)控工具Kafka-eagle
- 大數(shù)據(jù)-Storm流式框架(六)---Kafka介紹