輪數(shù)
稀疏深度學(xué)習(xí)
稀疏深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)的種類數(shù)與每一層的神經(jīng)元節(jié)點,我們深度學(xué)習(xí)好的學(xué)習(xí),學(xué)習(xí)高階模型,在學(xué)習(xí)過程中學(xué)習(xí)新的學(xué)習(xí)率。學(xué)習(xí)率:優(yōu)化算法的參數(shù),決定優(yōu)化器在最優(yōu)方向上前進步長的參數(shù)。初始梯度累加和:梯度累加和用來調(diào)整學(xué)習(xí)步長。L1正則項系數(shù):疊加在模型的1范數(shù)之上,用來對模型值進行限制防止過擬合。L2正則項系數(shù):疊加在模型的2范數(shù)之上,用來對模型值進行限制防止過擬合。L2正則項系數(shù)疊加在模型的2范數(shù)之上,用來對模型值進行限制防止過擬合。正則損失計算方式正則損失計算當(dāng)前有兩種方式。full:指針對全量參數(shù)計算。batch:則僅針對當(dāng)前批數(shù)據(jù)中出現(xiàn)的參數(shù)計算說明:batch模式計算速度快于full模式。重新訓(xùn)練對第一次訓(xùn)練無影響,僅影響任務(wù)重跑?!笆恰保呵蹇丈弦惠喌哪P徒Y(jié)果后重新開始訓(xùn)練?!胺瘛保簩?dǎo)入上一輪的訓(xùn)練結(jié)果繼續(xù)訓(xùn)練。批量大小一次訓(xùn)練所選取的樣本數(shù)。DeepFM,結(jié)合了FM和深度神經(jīng)網(wǎng)絡(luò)對于特征表達的學(xué)習(xí),同時學(xué)習(xí)高階和低階特征組合,從而達到準(zhǔn)確地特征組合學(xué)習(xí),進行精準(zhǔn)推薦。描述對于該策略的描述信息。最大迭代輪數(shù)模型訓(xùn)練的最大迭代輪數(shù),默認50。提前終止訓(xùn)練輪數(shù)在測試集上連續(xù)N輪迭代AUC無提高時,迭代停止,訓(xùn)練提前結(jié)束,默認5。