- 深度學(xué)習(xí)算法研究 內(nèi)容精選 換一換
-
動機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡介 本教程介紹了典型的現(xiàn)代物體檢測子包含兩階段檢測子:RCNN, Fast RCNN, Faster RCNN, 以及單階段檢測子: YOLO, SSD;成功的檢測子包含的幾個模塊;圖像分割典型算法和圖像分割關(guān)鍵算法。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員:來自:百科過HoloSens Store實(shí)現(xiàn)行業(yè)智能算法的自由便捷交易,讓智能產(chǎn)生更大的商用價值。以隧道管廊為例,視頻智能巡檢代替人工現(xiàn)場巡檢,7*24小時監(jiān)測,減少人員下站次數(shù)。原來3天的巡檢時長減少到2小時,提升12倍巡檢效率。同時AI智能算法有效解決了隧道內(nèi)作業(yè)人員管理難的問題,降低了生產(chǎn)風(fēng)險。來自:云商店
- 深度學(xué)習(xí)算法研究 相關(guān)內(nèi)容
-
GaussDB 學(xué)習(xí) GaussDB學(xué)習(xí) 云數(shù)據(jù)庫 GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能來自:專題選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計算資源,其中訓(xùn)練過程需要處理海量的數(shù)據(jù),推理過程則希望極低的時延。同時機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中, FPGA以其高并行計算、硬件可編程、低功耗、和低時延等優(yōu)勢,可針對不同算法動態(tài)編程設(shè)計最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計算和極來自:百科
- 深度學(xué)習(xí)算法研究 更多內(nèi)容
-
物標(biāo)簽 視頻 OCR 識別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢 識別準(zhǔn)確 采用標(biāo)簽排序學(xué)習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識別精度高,支持實(shí)時識別與檢測 簡單易用 提供符合RESTful的API訪問接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽來自:百科
通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 通過系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書。 服務(wù)咨詢來自:專題
文件識別基于深度學(xué)習(xí)技術(shù),可以實(shí)現(xiàn)5小時以內(nèi)的音頻到文字的轉(zhuǎn)換。支持垂直領(lǐng)域定制,對應(yīng)領(lǐng)域轉(zhuǎn)換效果更佳。 為什么選擇華為云錄音文件識別 高識別率:基于深度學(xué)習(xí)技術(shù),對特定領(lǐng)域場景和語料進(jìn)行優(yōu)化, 語音識別 率達(dá)到業(yè)界領(lǐng)先。 前沿技術(shù):使用成熟的算法,結(jié)合語音識別最新研究成果,為企業(yè)提供獨(dú)特競爭力優(yōu)勢。來自:專題
能平臺Mordelarts開發(fā)、迭代、發(fā)布和變現(xiàn)算法,模型。 人工智能市場的商品有: 藝賽旗機(jī)器人流程自動化軟件 IS-RPA AI開發(fā)平臺 ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺,為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動化標(biāo)注、大規(guī)模分布式T來自:云商店
- 基于深度學(xué)習(xí)的人類行為識別算法研究
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 深度學(xué)習(xí)算法詳細(xì)介紹
- 深度學(xué)習(xí)經(jīng)典算法 | 遺傳算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 粒子群算法詳解
- 深度學(xué)習(xí)經(jīng)典算法 | 蟻群算法解析
- 深度學(xué)習(xí)基礎(chǔ)-優(yōu)化算法詳解
- 智能算法、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)簡介
- 深度學(xué)習(xí) | 深度學(xué)習(xí)算法中英文對照表
- 深度學(xué)習(xí)算法中的集成學(xué)習(xí)(Ensemble Learning)與深度學(xué)習(xí)的結(jié)合