- 深度學(xué)習(xí)開源模型的風(fēng)險(xiǎn) 內(nèi)容精選 換一換
-
家公司也各有不同的物聯(lián)網(wǎng)接入?yún)f(xié)議,很難形成真正意義上的互聯(lián)互通。 直到近兩年,隨著行業(yè)巨頭的入局,逐步增強(qiáng)了物聯(lián)網(wǎng)領(lǐng)域各個(gè)基礎(chǔ)組件的發(fā)展,尤其是2018年NB-IoT通信技術(shù)的商用,讓整個(gè)業(yè)界對(duì)物聯(lián)網(wǎng)的認(rèn)知提升到一定的高度。 NB-IoT的優(yōu)點(diǎn)很突出,它有很低的功耗,且信號(hào)覆蓋廣來自:百科云知識(shí) 什么是非關(guān)系模型數(shù)據(jù)庫(kù) 什么是非關(guān)系模型數(shù)據(jù)庫(kù) 時(shí)間:2020-07-28 14:04:35 數(shù)據(jù)庫(kù) 非關(guān)系型數(shù)據(jù)庫(kù)主要是基于“非關(guān)系模型”的數(shù)據(jù)庫(kù)(由于關(guān)系型太大,所以一般用“非關(guān)系型”來表示其他類型的數(shù)據(jù)庫(kù)) 非關(guān)系型模型比如有: 列模型:存儲(chǔ)的數(shù)據(jù)是一列列的。關(guān)系型數(shù)據(jù)庫(kù)來自:百科
- 深度學(xué)習(xí)開源模型的風(fēng)險(xiǎn) 相關(guān)內(nèi)容
-
可定制化 針對(duì)客戶的特定場(chǎng)景需求,定制垂直領(lǐng)域的 語音識(shí)別 模型,識(shí)別效果更精確 支持熱詞 針對(duì)專業(yè)詞匯,支持上傳至熱詞表,增加專業(yè)詞匯的語音識(shí)別準(zhǔn)確率 一句話識(shí)別 對(duì)時(shí)長(zhǎng)較短(1分鐘以內(nèi))的語音進(jìn)行識(shí)別,提供良好的可擴(kuò)展性,支持熱詞定制 錄音文件識(shí)別 對(duì)于錄制的長(zhǎng)語音進(jìn)行識(shí)別,轉(zhuǎn)寫來自:百科老年教育作為終身教育的重要內(nèi)容,是構(gòu)建學(xué)習(xí)型社會(huì)、提高全民族思想文化素質(zhì)的有機(jī)組成部分,精神文明建設(shè)不可缺少的一部分。隨著社會(huì)經(jīng)濟(jì)發(fā)展以及大環(huán)境影響,老年人的精神面貌以及生活狀態(tài)得到了越來越廣泛的關(guān)注,為了豐富老年人的生活,老年開放學(xué)院 在線教育平臺(tái) 提供老年人在線教育,對(duì)幫助老年人與社會(huì)共同進(jìn)步來自:云商店
- 深度學(xué)習(xí)開源模型的風(fēng)險(xiǎn) 更多內(nèi)容
-
什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 時(shí)間:2021-03-30 10:05:42 5G 行業(yè)解決方案 實(shí)時(shí)互動(dòng)學(xué)習(xí)解決方案場(chǎng)景是華為云5G教育解決方案的應(yīng)用場(chǎng)景之一,實(shí)時(shí)互動(dòng)學(xué)習(xí)利用手機(jī),平板或?qū)S?span style='color:#C7000B'>的設(shè)備,使學(xué)生獲得一種立體生動(dòng)的強(qiáng)互動(dòng)高沉浸感體驗(yàn),對(duì)知識(shí)點(diǎn)有一個(gè)全方位的了解。再結(jié)來自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 數(shù)據(jù)庫(kù)進(jìn)階學(xué)習(xí) 時(shí)間:2020-12-16 09:52:25 云計(jì)算是未來的方向, 云數(shù)據(jù)庫(kù) 是解決方案的核心,學(xué)習(xí)本課程掌握華為云數(shù)據(jù)庫(kù)的運(yùn)維管理, 數(shù)據(jù)庫(kù)遷移 和根據(jù)業(yè)務(wù)場(chǎng)景出具解決方案的能力。 課程簡(jiǎn)介 課程覆蓋了華為云對(duì)各行業(yè)解決方案、數(shù)據(jù)庫(kù)遷來自:百科對(duì)軟件開發(fā)人員來說,此規(guī)范可以保證軟件產(chǎn)品的質(zhì)量,可以作為和其他程序員溝通的標(biāo)準(zhǔn),若編碼規(guī)則是建立在廣泛的共識(shí)之上,更有利于產(chǎn)品的發(fā)展。 對(duì)軟件開發(fā)人員來說,此規(guī)范可以保證軟件產(chǎn)品的質(zhì)量,可以作為和其他程序員溝通的標(biāo)準(zhǔn),若編碼規(guī)則是建立在廣泛的共識(shí)之上,更有利于產(chǎn)品的發(fā)展。 在線學(xué)習(xí) 基于應(yīng)用服務(wù)網(wǎng)格的灰度發(fā)布 微認(rèn)證來自:專題清晰度檢測(cè) 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖像是否清晰進(jìn)行預(yù)測(cè),識(shí)別拍攝的企業(yè)表單等原始圖片是清晰還是模糊,廣泛應(yīng)用于上傳照片到業(yè)務(wù)系統(tǒng)中的場(chǎng)景。 扭曲校正 利用圖像處理技術(shù)對(duì)表單類圖像進(jìn)行扭曲識(shí)別和校正,識(shí)別拍攝的企業(yè)表單等圖像是扭曲的還是整齊的,并對(duì)扭曲的表單圖像進(jìn)行校正,廣泛應(yīng)用于需上傳電子表單的業(yè)務(wù)系統(tǒng)中的場(chǎng)景。來自:百科響著企業(yè)的業(yè)務(wù)運(yùn)行和發(fā)展。然而,隨著國(guó)際形勢(shì)的變化,商業(yè)版數(shù)據(jù)庫(kù)面臨著斷供的風(fēng)險(xiǎn),給企業(yè)帶來了巨大的挑戰(zhàn)和壓力。如何應(yīng)對(duì)這一風(fēng)險(xiǎn),保障企業(yè)數(shù)據(jù)的安全和可用性?國(guó)產(chǎn)數(shù)據(jù)庫(kù)是否能夠成為商業(yè)版數(shù)據(jù)庫(kù)的替代方案?本文將以華為云數(shù)據(jù)庫(kù) GaussDB 為例,淺談商業(yè)版數(shù)據(jù)庫(kù)的斷供風(fēng)險(xiǎn)以及國(guó)產(chǎn)數(shù)據(jù)庫(kù)的重要性。來自:百科本課程針對(duì) OBS 對(duì)象存儲(chǔ)服務(wù)有需求的用戶,通過本課程學(xué)習(xí),用戶將對(duì)OBS對(duì)象存儲(chǔ)服務(wù)形成整體了解,學(xué)會(huì)在正確的場(chǎng)景下使用對(duì)象存儲(chǔ)服務(wù)。 立即學(xué)習(xí) 塊存儲(chǔ)服務(wù)EVS:云上堅(jiān)實(shí)的數(shù)據(jù)底座 通過本課程的學(xué)習(xí),用戶將對(duì)云硬盤形成系統(tǒng)的理解,掌握云硬盤的相關(guān)知識(shí)及如何在對(duì)應(yīng)的場(chǎng)景下使用云硬盤。 課程目標(biāo)來自:專題本課程針對(duì)OBS對(duì)象存儲(chǔ)服務(wù)有需求的用戶,通過本課程學(xué)習(xí),用戶將對(duì)OBS對(duì)象存儲(chǔ)服務(wù)形成整體了解,學(xué)會(huì)在正確的場(chǎng)景下使用對(duì)象存儲(chǔ)服務(wù)。 立即學(xué)習(xí) 塊存儲(chǔ)服務(wù)EVS:云上堅(jiān)實(shí)的數(shù)據(jù)底座 通過本課程的學(xué)習(xí),用戶將對(duì)云硬盤形成系統(tǒng)的理解,掌握云硬盤的相關(guān)知識(shí)及如何在對(duì)應(yīng)的場(chǎng)景下使用云硬盤。 課程目標(biāo)來自:專題云知識(shí) Huawei HiLens 和ModelArts的關(guān)系 Huawei HiLens和ModelArts的關(guān)系 時(shí)間:2020-09-19 10:18:12 ModelArts是面向AI開發(fā)者的一站式開發(fā)平臺(tái),核心功能是模型訓(xùn)練。Huawei HiLens偏AI應(yīng)用開發(fā),并實(shí)現(xiàn)端云協(xié)同推理和管理。來自:百科使用ModelArts開發(fā)自動(dòng)駕駛模型 使用ModelArts開發(fā)自動(dòng)駕駛模型 時(shí)間:2020-11-27 10:27:19 本視頻主要為您介紹使用ModelArts開發(fā)自動(dòng)駕駛模型的操作教程指導(dǎo)。 場(chǎng)景描述: 數(shù)據(jù)湖 服務(wù)提供數(shù)據(jù)攝取、數(shù)據(jù)處理等功能。 ModelArts是一個(gè)一站式的 AI開發(fā)平臺(tái) ,來自:百科
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能保險(xiǎn)風(fēng)險(xiǎn)評(píng)估
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)中常用的生成模型
- 深度學(xué)習(xí)應(yīng)用篇-元學(xué)習(xí)[14]:基于優(yōu)化的元學(xué)習(xí)-MAML模型、LEO模型、Reptile模型
- 利用深度學(xué)習(xí)建立流失模型
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型