- 數(shù)據(jù)傾斜的解決方法 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)的優(yōu)勢(shì) 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)的優(yōu)勢(shì) 時(shí)間:2020-09-24 10:52:19 DWS數(shù)據(jù)庫(kù)內(nèi)核使用華為自主研發(fā)的 GaussDB 數(shù)據(jù)庫(kù),兼容PostgreSQL 9.2.4的數(shù)據(jù)庫(kù)內(nèi)核引擎,從單機(jī)OLTP數(shù)據(jù)庫(kù)改造為企業(yè)級(jí)MPP(大規(guī)模并行處理)架構(gòu)的OLAP分布式數(shù)據(jù)庫(kù),其主要面向海量數(shù)據(jù)分析場(chǎng)景。來(lái)自:百科
- 數(shù)據(jù)傾斜的解決方法 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 數(shù)據(jù)管理技術(shù)的新挑戰(zhàn) 數(shù)據(jù)管理技術(shù)的新挑戰(zhàn) 時(shí)間:2021-05-21 11:30:13 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)管理技術(shù)的面臨的新挑戰(zhàn)主要來(lái)自高度可擴(kuò)展性和可伸縮性、數(shù)據(jù)類(lèi)型多樣和異構(gòu)處理能力、數(shù)據(jù)處理時(shí)效性要求以及大數(shù)據(jù)來(lái)臨這四個(gè)方面。 1、高度可擴(kuò)展性和可伸縮性來(lái)自:百科量化”,將多源、多種類(lèi)的各部門(mén)數(shù)據(jù)數(shù)據(jù)加工成標(biāo)準(zhǔn)、清潔的數(shù)據(jù)資產(chǎn)供業(yè)務(wù)使用。 提升政府治理能力 大數(shù)據(jù)應(yīng)用能夠揭示傳統(tǒng)技術(shù)方式難以展現(xiàn)的關(guān)聯(lián)關(guān)系,推動(dòng)政府數(shù)據(jù)開(kāi)放共享,促進(jìn)社會(huì)事業(yè)數(shù)據(jù)融合和資源整合,提升政府整體數(shù)據(jù)分析能力,為有效處理復(fù)雜社會(huì)問(wèn)題提供新的手段。 政府及公共事業(yè)解決方案來(lái)自:百科
- 數(shù)據(jù)傾斜的解決方法 更多內(nèi)容
-
招聘專(zhuān)業(yè)DBA,運(yùn)維人員。 數(shù)據(jù)倉(cāng)庫(kù) on 云主機(jī) 購(gòu)買(mǎi)并安裝數(shù)據(jù)倉(cāng)庫(kù)軟件; 租用云主機(jī); 招聘專(zhuān)業(yè)DBA運(yùn)維人員。 華為云DWS 無(wú)需購(gòu)買(mǎi)和安裝任何軟硬件; 按需隨時(shí)租用 DDS ; 無(wú)需招聘DBA,運(yùn)維人員。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行來(lái)自:百科數(shù)據(jù)分析與應(yīng)用 面向操作型場(chǎng)景,數(shù)據(jù)庫(kù)的管理可以由數(shù)據(jù)管理服務(wù) DAS 實(shí)現(xiàn),DAS是用來(lái)登錄和操作數(shù)據(jù)庫(kù)的Web服務(wù),提供數(shù)據(jù)庫(kù)運(yùn)維開(kāi)發(fā)功能以及DevOPS服務(wù)。為方便用戶(hù)使用和運(yùn)維華為云RDS,提供數(shù)據(jù)和表結(jié)構(gòu)的同步、在線編輯,SQL輸入的智能提示等豐富的數(shù)據(jù)庫(kù)開(kāi)發(fā)功能。同時(shí)面向大企業(yè)提供來(lái)自:百科華為云計(jì)算 云知識(shí) 云數(shù)據(jù)庫(kù)RDS的優(yōu)勢(shì) 云數(shù)據(jù)庫(kù)RDS的優(yōu)勢(shì) 時(shí)間:2020-09-19 11:29:11 云數(shù)據(jù)庫(kù)RDS服務(wù)具有完善的性能監(jiān)控體系和多重安全防護(hù)措施,并提供了專(zhuān)業(yè)的數(shù)據(jù)庫(kù)管理平臺(tái),讓用戶(hù)能夠在云中輕松的進(jìn)行設(shè)置和擴(kuò)展云數(shù)據(jù)庫(kù)。通過(guò)云數(shù)據(jù)庫(kù)RDS服務(wù)的管理控制臺(tái),用戶(hù)來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)技術(shù)的發(fā)展歷程 數(shù)據(jù)庫(kù)技術(shù)的發(fā)展歷程 時(shí)間:2021-05-20 15:57:30 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)管理是指對(duì)數(shù)據(jù)進(jìn)行分類(lèi)、組織、編碼、存儲(chǔ)、檢索和維護(hù),是數(shù)據(jù)處理的中心問(wèn)題。數(shù)據(jù)管理在應(yīng)用需求推動(dòng)下,以軟硬件的飛速發(fā)展為基礎(chǔ),發(fā)展為三個(gè)階段:人工管理、文件系統(tǒng)、數(shù)據(jù)庫(kù)系統(tǒng)。來(lái)自:百科此服務(wù)開(kāi)發(fā)自己的加密應(yīng)用。數(shù)據(jù)加密技術(shù)的優(yōu)點(diǎn)如下: 第一,數(shù)據(jù)加密技術(shù)能夠始終保障數(shù)據(jù)的安全性。一般來(lái)說(shuō),當(dāng)數(shù)據(jù)從一個(gè)位置移動(dòng)到另一個(gè)位置的時(shí)候可以說(shuō)是較為脆弱的,而這時(shí)候使用數(shù)據(jù)加密技術(shù),既能夠讓所移動(dòng)的數(shù)據(jù)信息能夠得到更安全的保障,不會(huì)因?yàn)槲恢?span style='color:#C7000B'>的變化而加大泄漏的風(fēng)險(xiǎn)。 第二,來(lái)自:百科數(shù)據(jù)工坊 DWR有哪些功能 數(shù)據(jù)工坊 DWR有哪些功能 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 數(shù)據(jù)工坊DWR是開(kāi)放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開(kāi)放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。來(lái)自:專(zhuān)題區(qū)域。 GaussDB數(shù)據(jù)庫(kù)權(quán)限策略是什么? 根據(jù)授權(quán)精細(xì)程度分為角色和策略 角色: IAM 最初提供的一種根據(jù)用戶(hù)的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件來(lái)自:專(zhuān)題1、通用 表格識(shí)別 :提取表格內(nèi)的文字和所在行列位置信息,適應(yīng)不同格式的表格。同時(shí)也識(shí)別表格外部的文字區(qū)域。用于各種單據(jù)和報(bào)表的電子化,恢復(fù)結(jié)構(gòu)化信息。 2、 通用文字識(shí)別 :提取圖片內(nèi)的文字及其對(duì)應(yīng)位置信息,并能夠根據(jù)文字在圖片中的位置進(jìn)行結(jié)構(gòu)化整理工作。 3、手寫(xiě)文字識(shí)別:識(shí)別文檔中的手寫(xiě)文字信息,并將識(shí)別的結(jié)構(gòu)化結(jié)果返回給用戶(hù)。來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典 時(shí)間:2021-06-02 10:01:20 數(shù)據(jù)庫(kù) 在數(shù)據(jù)庫(kù)設(shè)計(jì)的需求分析階段,要求輸出數(shù)據(jù)字典。這里的數(shù)據(jù)字典是進(jìn)行需求分析階段,數(shù)據(jù)收集和數(shù)據(jù)分析所獲得的成果。而不是某個(gè)數(shù)據(jù)庫(kù)產(chǎn)品中的DD(Data Dictionary)。來(lái)自:百科是基于硬件、軟件系統(tǒng)不可靠、一定會(huì)有故障的假設(shè)進(jìn)行設(shè)計(jì)的,是基于 任何單臺(tái)計(jì)算機(jī)都無(wú)足夠能力處理海量數(shù)據(jù)的假設(shè)進(jìn)行設(shè)計(jì)的,因此 TDengine 從研 發(fā)的第一天起,就是按照分布式高可靠架構(gòu)進(jìn)行設(shè)計(jì)的,是完全去中心化的 TDengine的免費(fèi)時(shí)序數(shù)據(jù)庫(kù)如何保證高效性 TDengine 對(duì)每個(gè)數(shù)據(jù)采集點(diǎn)單獨(dú)建來(lái)自:專(zhuān)題可以在業(yè)務(wù)運(yùn)行時(shí)產(chǎn)生一份時(shí)間水平一致的快照數(shù)據(jù),具有業(yè)務(wù)數(shù)據(jù)分析價(jià)值,過(guò)程中的數(shù)據(jù)變化不會(huì)體現(xiàn)在導(dǎo)出數(shù)據(jù)中。 說(shuō)明:全量階段使用快照模式導(dǎo)出能夠有效提升全量+增量場(chǎng)景下的數(shù)據(jù)同步效率,但PostgreSQL的快照機(jī)制會(huì)使導(dǎo)出期間數(shù)據(jù)庫(kù)的歷史數(shù)據(jù)不能被回收,可能有空間膨脹的現(xiàn)象。建議在全量或增量數(shù)據(jù)量大且源庫(kù)磁盤(pán)空間充足的情況下使用該方式。來(lái)自:百科云知識(shí) 為什么說(shuō)大數(shù)據(jù)的發(fā)展是需求驅(qū)動(dòng)的 為什么說(shuō)大數(shù)據(jù)的發(fā)展是需求驅(qū)動(dòng)的 時(shí)間:2021-05-24 09:15:11 大數(shù)據(jù) 大數(shù)據(jù)的技術(shù)發(fā)展是由社會(huì)進(jìn)步過(guò)程中,不斷變化的需求而驅(qū)動(dòng)的。 互聯(lián)網(wǎng)的發(fā)展,讓人們需要對(duì)海量的非結(jié)構(gòu)化數(shù)據(jù)進(jìn)行分布式存儲(chǔ),并行計(jì)算。所以大數(shù)據(jù)進(jìn)入了1.0時(shí)代。來(lái)自:百科
- 數(shù)據(jù)傾斜預(yù)警—數(shù)據(jù)導(dǎo)入存儲(chǔ)傾斜即時(shí)檢測(cè)
- Hive數(shù)據(jù)傾斜
- 如何處理 Spark 中的傾斜數(shù)據(jù)?
- Redis如何避免數(shù)據(jù)傾斜問(wèn)題?
- 大數(shù)據(jù)常見(jiàn)問(wèn)題:數(shù)據(jù)傾斜
- MapReduce數(shù)據(jù)傾斜與優(yōu)化
- 數(shù)據(jù)傾斜(現(xiàn)象、原理、解決方案)
- GaussDB(DWS)發(fā)生數(shù)據(jù)傾斜不要慌,一文教你輕松獲取表傾斜率
- 【DWS】MPP架構(gòu)下數(shù)據(jù)傾斜率分析
- 分布式數(shù)據(jù)存儲(chǔ)傾斜快速檢測(cè)
- 云數(shù)據(jù)庫(kù) GaussDB-入門(mén)
- 證件類(lèi) OCR
- ocr概覽頁(yè)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 交換數(shù)據(jù)空間
- 數(shù)據(jù)工坊
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)備份恢復(fù)
- WeLink數(shù)據(jù)密盾
- 數(shù)據(jù)快遞服務(wù)
- 數(shù)據(jù)加密服務(wù)