- mapreduce的運(yùn)行環(huán)境 內(nèi)容精選 換一換
-
來(lái)自:百科
- mapreduce的運(yùn)行環(huán)境 相關(guān)內(nèi)容
-
大數(shù)據(jù)是集收集,處理,存儲(chǔ)為一體的技術(shù)總稱。在海量數(shù)據(jù)處理的場(chǎng)景,大數(shù)據(jù)對(duì)計(jì)算及存儲(chǔ)的要求較高,普遍以集群形式存在。不同的組件有不同的功能體現(xiàn)。如圖,這些就是一些大數(shù)據(jù)生態(tài)中常用的組件以及對(duì)應(yīng)的功能的體現(xiàn)。 大數(shù)據(jù)普遍是以集群的形式存在的,但有任務(wù)需要處理海量的數(shù)據(jù)時(shí),一般會(huì)把任務(wù)先分解成更小規(guī)模的任務(wù),來(lái)自:百科
- mapreduce的運(yùn)行環(huán)境 更多內(nèi)容
-
op系統(tǒng)的服務(wù),一鍵即可部署Hadoop集群。MRS提供租戶完全可控的一站式企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),完全兼容開源接口,結(jié)合 華為云計(jì)算 、存儲(chǔ)優(yōu)勢(shì)及大數(shù)據(jù)行業(yè)經(jīng)驗(yàn),為客戶提供高性能、低成本、靈活易用的全棧大數(shù)據(jù)平臺(tái),輕松運(yùn)行Hadoop、Spark、HBase、Kafka、Storm來(lái)自:百科
,跨服務(wù)的數(shù)據(jù)共享。讓用戶在充分享受Hadoop帶來(lái)的開放,便捷,創(chuàng)新的同時(shí),繼續(xù)使用熟悉的數(shù)據(jù)(倉(cāng))庫(kù)方式管理和使用自己的海量數(shù)據(jù)。繼續(xù)使用傳統(tǒng)的 數(shù)據(jù)倉(cāng)庫(kù) 的上層應(yīng)用,特別是商業(yè)智能BI類的應(yīng)用。 MapReduce服務(wù) MRS MapReduce服務(wù)(MapReduce Ser來(lái)自:百科
存儲(chǔ)等數(shù)據(jù)源,無(wú)論是客戶自建還是公有云上的數(shù)據(jù)源 本地?cái)?shù)據(jù)遷移上云 本地?cái)?shù)據(jù)是指存儲(chǔ)在用戶自建或者租用的IDC中的數(shù)據(jù),或者第三方云環(huán)境中的數(shù)據(jù),包括關(guān)系型數(shù)據(jù)庫(kù)、NoSQL數(shù)據(jù)庫(kù)、OLAP數(shù)據(jù)庫(kù)、文件系統(tǒng)等。 這個(gè)場(chǎng)景是用戶希望利用云上的計(jì)算和存儲(chǔ)資源,需要先將本地?cái)?shù)據(jù)遷移上云來(lái)自:百科
2、數(shù)據(jù)存儲(chǔ) 數(shù)據(jù)分析業(yè)務(wù)有海量的原始和結(jié)果數(shù)據(jù),需要海量廉價(jià)的存儲(chǔ)空間,對(duì)象存儲(chǔ)服務(wù)幫您臨時(shí)或永久存儲(chǔ)海量數(shù)據(jù),支持5TB超大文件存儲(chǔ),您不用擔(dān)心存儲(chǔ)容量限制,按需付費(fèi),大大降低存儲(chǔ)成本。 對(duì)應(yīng)產(chǎn)品 對(duì)象存儲(chǔ)服務(wù) OBS 、MapReduce服務(wù) 電商行業(yè)解決方案 近年來(lái),大數(shù)據(jù)來(lái)自:百科
完成服務(wù)的開通、刪除、配置操作,并將用戶信息同步到數(shù)據(jù)面。 完成數(shù)據(jù)面資源的申請(qǐng)與自動(dòng)部署。 2.服務(wù)數(shù)據(jù)面 接收用戶發(fā)送數(shù)據(jù)的請(qǐng)求,對(duì)已鑒權(quán)的數(shù)據(jù)接收并存儲(chǔ)。 接收用戶獲取數(shù)據(jù)的請(qǐng)求,在鑒權(quán)后輸出對(duì)應(yīng)的用戶數(shù)據(jù)。 按時(shí)老化存儲(chǔ)在系統(tǒng)中的用戶數(shù)據(jù)。 根據(jù)用戶配置,將用戶數(shù)據(jù)存儲(chǔ)到對(duì)象存儲(chǔ)服務(wù)(Object Storage來(lái)自:百科
租用”需要的資源集合,來(lái)運(yùn)行應(yīng)用和作業(yè),并存放數(shù)據(jù)。在大數(shù)據(jù)集群上可以存在多個(gè)資源集合來(lái)支持多個(gè)用戶的不同需求。 · MRS支持細(xì)粒度權(quán)限管理,結(jié)合華為云 IAM 服務(wù)提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件等。基于策略的授權(quán)是一種更加靈活的授權(quán)方式,能來(lái)自:百科
成本、高性能、不斷業(yè)務(wù)、無(wú)須擴(kuò)容的解決方案。 海量數(shù)據(jù)存儲(chǔ)分析的典型場(chǎng)景:PB級(jí)的數(shù)據(jù)存儲(chǔ),批量數(shù)據(jù)分析,毫秒級(jí)的數(shù)據(jù)詳單查詢等 歷史數(shù)據(jù)明細(xì)查詢的典型場(chǎng)景:流水審計(jì),設(shè)備歷史能耗分析,軌跡回放,車輛駕駛行為分析,精細(xì)化監(jiān)控等 海量行為 日志分析 的典型場(chǎng)景:學(xué)習(xí)習(xí)慣分析,運(yùn)營(yíng)日志分析,系統(tǒng)操作日志分析查詢等來(lái)自:專題
- Windows環(huán)境運(yùn)行FlinkDemo
- Linux環(huán)境下運(yùn)行
- Mapreduce任務(wù)Map階段運(yùn)行進(jìn)程說(shuō)明
- maven修改運(yùn)行環(huán)境配置
- Linux環(huán)境下運(yùn)行介紹
- 【PMP】二、項(xiàng)目運(yùn)行環(huán)境
- MapTask,ReduceTask,MapReduce運(yùn)行機(jī)制詳解
- MapReduce快速入門系列(11) | MapTask,ReduceTask以及MapReduce運(yùn)行機(jī)制詳解
- Hadoop環(huán)境搭建測(cè)試以及MapReduce實(shí)例實(shí)現(xiàn)
- MapReduce作業(yè)調(diào)試技巧:從本地測(cè)試到集群運(yùn)行