- 數(shù)據(jù)倉(cāng)庫(kù)使用hadoop架構(gòu) 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 云硬盤應(yīng)用場(chǎng)景: 數(shù)據(jù)倉(cāng)庫(kù) 云硬盤應(yīng)用場(chǎng)景:數(shù)據(jù)倉(cāng)庫(kù) 時(shí)間:2021-03-23 19:41:16 云硬盤 數(shù)據(jù)倉(cāng)庫(kù)是數(shù)據(jù)讀密集型的應(yīng)用場(chǎng)景,典型例子如oracle RAC、SAP HANA等。傳統(tǒng)企業(yè)核心數(shù)據(jù)庫(kù)上云往往會(huì)面臨性能、可靠性等各方面的問(wèn)題。例如oracle來(lái)自:百科力。從另外一種意義上說(shuō),HCatalog還是Hadoop的表和存儲(chǔ)管理層,它使用戶能夠通過(guò)使用不同的數(shù)據(jù)處理工具(比如MapReduce),更輕松地在網(wǎng)格上讀寫HDFS上的數(shù)據(jù),HCatalog還能為這些數(shù)據(jù)處理工具提供讀寫接口,并使用Hive的命令行接口發(fā)布數(shù)據(jù)定義和元數(shù)據(jù)探索來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)使用hadoop架構(gòu) 相關(guān)內(nèi)容
-
MRS 可以做什么 MRS可以做什么 時(shí)間:2020-09-24 09:48:11 MRS基于開源軟件Hadoop進(jìn)行功能增強(qiáng)、Spark內(nèi)存計(jì)算引擎、HBase分布式存儲(chǔ)數(shù)據(jù)庫(kù)以及Hive數(shù)據(jù)倉(cāng)庫(kù)框架,提供企業(yè)級(jí)大數(shù)據(jù)存儲(chǔ)、查詢和分析的統(tǒng)一平臺(tái),幫助企業(yè)快速構(gòu)建海量數(shù)據(jù)信息處理系統(tǒng),可解決各大企業(yè)的以下需求:來(lái)自:百科? 企業(yè)核心業(yè)務(wù)應(yīng)用架構(gòu)和集成架構(gòu)發(fā)展歷程 企業(yè)核心業(yè)務(wù)演進(jìn)我們將主要分成兩部分:應(yīng)用架構(gòu)發(fā)展歷程和集成架構(gòu)發(fā)展歷程。應(yīng)用架構(gòu)的演進(jìn),將依次經(jīng)歷單體應(yīng)用架構(gòu)、垂直架構(gòu)、SOA架構(gòu),最終發(fā)展至微服務(wù)架構(gòu)。 立即學(xué)習(xí) 最新文章 容器相關(guān)基礎(chǔ)操作 Docker架構(gòu) Docker Engine介紹和Docker內(nèi)部構(gòu)建來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)使用hadoop架構(gòu) 更多內(nèi)容
-
數(shù)據(jù)倉(cāng)庫(kù)服務(wù)_SQL on Anywhere 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB (DWS)_SQL on Anywhere 華為云數(shù)據(jù)倉(cāng)庫(kù)服務(wù)-SQL on Anywhere 華為云數(shù)據(jù)倉(cāng)庫(kù)服務(wù)-SQL on Anywhere 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)(Data Warehouse Service,來(lái)自:專題ase、MySQL、DWS(數(shù)據(jù)倉(cāng)庫(kù)服務(wù))數(shù)據(jù)源,使用高效的數(shù)據(jù)導(dǎo)入接口導(dǎo)入數(shù)據(jù)。 CDM 任務(wù)基于分布式計(jì)算框架,自動(dòng)將任務(wù)切分為獨(dú)立的子任務(wù)并行執(zhí)行,能夠極大提高數(shù)據(jù)遷移的效率。針對(duì)Hive、HBase、MySQL、DWS(數(shù)據(jù)倉(cāng)庫(kù)服務(wù))數(shù)據(jù)源,使用高效的數(shù)據(jù)導(dǎo)入接口導(dǎo)入數(shù)據(jù)。來(lái)自:專題華為云計(jì)算 云知識(shí) 架構(gòu)設(shè)計(jì)基礎(chǔ) 架構(gòu)設(shè)計(jì)基礎(chǔ) 時(shí)間:2020-12-07 15:34:20 在做業(yè)務(wù)云遷移之前,從架構(gòu)設(shè)計(jì)的角度考慮高可用、高擴(kuò)展等問(wèn)題是必不可少的環(huán)節(jié),也是影響業(yè)務(wù)遷移進(jìn)度和效果的重要因素,學(xué)習(xí)本課程,將學(xué)會(huì)如何在云端設(shè)計(jì)合適的架構(gòu)來(lái)承載業(yè)務(wù),應(yīng)對(duì)后繼業(yè)務(wù)架構(gòu)的演進(jìn)。 課程簡(jiǎn)介來(lái)自:百科GaussDB(DWS)與Hive在功能上存在一定的差異,主要體現(xiàn)在以下幾個(gè)方面: Hive是基于Hadoop MapReduce的數(shù)據(jù)倉(cāng)庫(kù),GaussDB(DWS)是基于Postgres的MPP的數(shù)據(jù)倉(cāng)庫(kù)。 Hive的數(shù)據(jù)在HDFS中存儲(chǔ),GaussDB(DWS)的數(shù)據(jù)可以在本地存儲(chǔ),也可以通過(guò)外表的形式通過(guò) OBS 進(jìn)行存儲(chǔ)。來(lái)自:百科分析場(chǎng)景。 數(shù)據(jù)倉(cāng)庫(kù)遷移 數(shù)據(jù)倉(cāng)庫(kù)是企業(yè)的重要數(shù)據(jù)分析系統(tǒng),隨著業(yè)務(wù)量的增長(zhǎng),自建數(shù)倉(cāng)性能逐漸不能滿足實(shí)際要求,同時(shí)擴(kuò)展性差、成本高,也使擴(kuò)容極為困難。DWS作為云上企業(yè)級(jí)數(shù)據(jù)倉(cāng)庫(kù),具備高性能、低成本、易擴(kuò)展等特性,滿足大數(shù)據(jù)時(shí)代企業(yè)數(shù)據(jù)倉(cāng)庫(kù)業(yè)務(wù)訴求。 圖1數(shù)據(jù)倉(cāng)庫(kù)遷移 優(yōu)勢(shì) 平滑遷移來(lái)自:百科華為云計(jì)算 云知識(shí) DAS 的系統(tǒng)架構(gòu) DAS的系統(tǒng)架構(gòu) 時(shí)間:2021-05-31 17:24:04 數(shù)據(jù)庫(kù) DAS的系統(tǒng)架構(gòu)如下圖所示。其中的功能組件解釋如下: Conn Consoles:DAS連接管理的控制臺(tái); DAS Consoles:DAS Console是 數(shù)據(jù)管理服務(wù) 的統(tǒng)一入口,在Console來(lái)自:百科磁盤增強(qiáng)型D2型 彈性云服務(wù)器 規(guī)格及使用場(chǎng)景介紹 磁盤增強(qiáng)型D2型彈性云服務(wù)器規(guī)格及使用場(chǎng)景介紹 時(shí)間:2020-03-31 16:40:22 云服務(wù)器 磁盤增強(qiáng)型D2型彈性云服務(wù)器基于KVM虛擬化平臺(tái),采用本地存儲(chǔ)設(shè)計(jì),提供高存儲(chǔ)性能和高內(nèi)網(wǎng)帶寬,適用于Hadoop 分布式計(jì)算、大型數(shù)據(jù)倉(cāng)庫(kù)、分布式文件系統(tǒng)、日志或數(shù)據(jù)處理應(yīng)用。來(lái)自:百科景綜合實(shí)踐。 目標(biāo)學(xué)員 ICT行業(yè)人才及希望學(xué)習(xí)ICT行業(yè)知識(shí)的學(xué)員 課程目標(biāo) 學(xué)完本課程后,學(xué)員能夠掌握常用且重要的大數(shù)據(jù)組件技術(shù)原理與架構(gòu); 能夠運(yùn)用華為大數(shù)據(jù)解決方案 FusionInsight HD實(shí)現(xiàn)實(shí)際應(yīng)用的基礎(chǔ)操作,比如HDFS,HBase,操作,數(shù)據(jù)導(dǎo)入導(dǎo)出操作等。來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)發(fā)展現(xiàn)狀及發(fā)展趨勢(shì) 數(shù)據(jù)倉(cāng)庫(kù)發(fā)展現(xiàn)狀及發(fā)展趨勢(shì) 時(shí)間:2021-03-03 14:09:48 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)是指從業(yè)務(wù)數(shù)據(jù)中創(chuàng)建信息數(shù)據(jù)庫(kù),并針對(duì)決策和分析進(jìn)行優(yōu)化。華為云數(shù)據(jù)倉(cāng)庫(kù)服務(wù)實(shí)時(shí)、簡(jiǎn)單、安全可信的企業(yè)級(jí)融合數(shù)據(jù)倉(cāng)庫(kù),可借助DWS Expr來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)示例
- Apache Hadoop HDFS 架構(gòu)
- Hadoop02【架構(gòu)分析】
- Hadoop學(xué)習(xí)之HDFS架構(gòu)(二)
- Hadoop學(xué)習(xí)之HDFS架構(gòu)(一)
- 漫談數(shù)據(jù)倉(cāng)庫(kù)的分層架構(gòu)與演進(jìn)
- 【Hadoop】【Yarn】Hadoop中ShutdownHook的使用
- 面試,如何使用數(shù)據(jù)倉(cāng)庫(kù)?
- 使用 Hive 構(gòu)建數(shù)據(jù)倉(cāng)庫(kù)
- 一篇文章搞懂?dāng)?shù)據(jù)倉(cāng)庫(kù):數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)-Lambda和Kappa對(duì)比
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)產(chǎn)品架構(gòu)_技術(shù)特點(diǎn)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 智能數(shù)據(jù)湖_FusionInsight_數(shù)據(jù)湖應(yīng)用場(chǎng)景_大數(shù)據(jù)-華為云
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- MapReduce服務(wù)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- GeminiDB Cassandra 接口