- 數(shù)據(jù)倉(cāng)庫(kù)的邏輯模關(guān)系模型 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 邏輯模型建設(shè)的方法 邏輯模型建設(shè)的方法 時(shí)間:2021-06-02 14:25:16 數(shù)據(jù)庫(kù) 在建設(shè)數(shù)據(jù)庫(kù)的邏輯模型時(shí),應(yīng)當(dāng)按照以下流程展開(kāi): 1. 建立命名規(guī)則; 2. 按照設(shè)計(jì)流程設(shè)計(jì)邏輯數(shù)據(jù)模型; 3. 確定實(shí)體和屬性; 4. 確定實(shí)體與實(shí)體之間的關(guān)系; 5. 補(bǔ)充實(shí)體的非健值屬性。來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)的邏輯模關(guān)系模型 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 邏輯模型中的實(shí)體 邏輯模型中的實(shí)體 時(shí)間:2021-06-02 10:32:53 數(shù)據(jù)庫(kù) 根據(jù)實(shí)體的特點(diǎn),邏輯模型中的實(shí)體劃分為兩類: 1. 獨(dú)立型實(shí)體(Independent Entity) 直角矩形表示; 不依賴于其他實(shí)體,可以獨(dú)立存在。 2. 依賴型實(shí)體(Dependent來(lái)自:百科云知識(shí) 邏輯設(shè)計(jì)和邏輯模型 邏輯設(shè)計(jì)和邏輯模型 時(shí)間:2021-06-02 10:21:11 數(shù)據(jù)庫(kù) 邏輯設(shè)計(jì)階段是將概念模型轉(zhuǎn)化為具體的數(shù)據(jù)模型的過(guò)程。 按照概念設(shè)計(jì)階段建立的基本E-R圖,按選定的目標(biāo)數(shù)據(jù)模型(層次、網(wǎng)狀、關(guān)系、面向?qū)ο螅?,轉(zhuǎn)換成相應(yīng)的邏輯模型。 對(duì)于關(guān)系型數(shù)據(jù)來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)的邏輯模關(guān)系模型 更多內(nèi)容
-
庫(kù)有很大的擴(kuò)展空間,但最終肯定會(huì)達(dá)到垂直擴(kuò)展的上限。NoSQL數(shù)據(jù)庫(kù)是水平擴(kuò)展的。 非關(guān)系數(shù)據(jù)存儲(chǔ)是自然分布的,并且NoSQL數(shù)據(jù)庫(kù)的擴(kuò)展可以通過(guò)向資源池中添加更多的普通數(shù)據(jù)庫(kù)服務(wù)器(節(jié)點(diǎn))來(lái)分擔(dān)負(fù)載。 3.對(duì)事務(wù)的支持是不同的。 如果數(shù)據(jù)操作需要高事務(wù)性,或者需要復(fù)雜的數(shù)據(jù)查詢來(lái)自:百科什么是非關(guān)系模型數(shù)據(jù)庫(kù) 什么是非關(guān)系模型數(shù)據(jù)庫(kù) 時(shí)間:2020-07-28 14:04:35 數(shù)據(jù)庫(kù) 非關(guān)系型數(shù)據(jù)庫(kù)主要是基于“非關(guān)系模型”的數(shù)據(jù)庫(kù)(由于關(guān)系型太大,所以一般用“非關(guān)系型”來(lái)表示其他類型的數(shù)據(jù)庫(kù)) 非關(guān)系型模型比如有: 列模型:存儲(chǔ)的數(shù)據(jù)是一列列的。關(guān)系型數(shù)據(jù)庫(kù)以來(lái)自:百科GaussDB (DWS)的邏輯架構(gòu) GaussDB(DWS)的邏輯架構(gòu) 時(shí)間:2021-06-17 12:07:28 數(shù)據(jù)庫(kù) GaussDB(DWS)的邏輯架構(gòu)如下圖。其中: CM: 集群管理模塊(Cluster Manager); 管理和監(jiān)控分布式系統(tǒng)中各個(gè)功能單元和物理資源的運(yùn)行情況,確保整個(gè)系統(tǒng)的穩(wěn)定運(yùn)行。來(lái)自:百科大數(shù)據(jù)ETL處理 運(yùn)營(yíng)商大數(shù)據(jù)分析 運(yùn)營(yíng)商數(shù)據(jù)體量在PB~EB級(jí),其數(shù)據(jù)種類多,有結(jié)構(gòu)化的基站信息數(shù)據(jù),非結(jié)構(gòu)化的消息通信數(shù)據(jù),同時(shí)對(duì)數(shù)據(jù)的時(shí)效性有很高的要求, DLI 服務(wù)提供批處理、流處理等多模引擎,打破數(shù)據(jù)孤島進(jìn)行統(tǒng)一的數(shù)據(jù)分析。 優(yōu)勢(shì) 大數(shù)據(jù)ETL:具備TB~EB級(jí)運(yùn)營(yíng)商 數(shù)據(jù)治理 能力,能快速來(lái)自:百科支持統(tǒng)一管理在腳本開(kāi)發(fā)和作業(yè)開(kāi)發(fā)使用到的file、jar、archive類型的資源。 作業(yè)調(diào)度 支持單次調(diào)度、周期調(diào)度和事件驅(qū)動(dòng)調(diào)度,周期調(diào)度支持分鐘、小時(shí)、天、周、月多種調(diào)度周期。 作業(yè)調(diào)度支持多種云服務(wù)的多種類型的任務(wù)混合編排,高性能的調(diào)度引擎已經(jīng)經(jīng)過(guò)幾百個(gè)應(yīng)用的檢驗(yàn)。 運(yùn)維監(jiān)控 支持對(duì)作來(lái)自:百科基于行業(yè)領(lǐng)域知識(shí)庫(kù)快速構(gòu)建數(shù)據(jù)中臺(tái) 通過(guò)應(yīng)用華為在企業(yè)業(yè)務(wù)領(lǐng)域積累的豐富的行業(yè)領(lǐng)域模型和算法,幫助企業(yè)構(gòu)建數(shù)據(jù)中臺(tái),快速提升數(shù)據(jù)運(yùn)營(yíng)能力。 優(yōu)勢(shì) 多行業(yè)支持 覆蓋政務(wù)/稅務(wù)/城市/交通/園區(qū)等各行業(yè)。 標(biāo)準(zhǔn)規(guī)范支持 支持分層結(jié)構(gòu)的行業(yè)數(shù)據(jù)標(biāo)準(zhǔn)。 領(lǐng)域模型豐富 支持包含人員/組織/事件/時(shí)空/車輛/資來(lái)自:百科華為云計(jì)算 云知識(shí) 實(shí)體間的關(guān)系 實(shí)體間的關(guān)系 時(shí)間:2021-06-02 11:14:58 數(shù)據(jù)庫(kù) 關(guān)系是描述實(shí)體間如何發(fā)生關(guān)聯(lián)的。 比如一本書包括一個(gè)或多個(gè)章節(jié),也可能不分章節(jié)。“包括”就是這兩個(gè)實(shí)體之間的關(guān)系。 關(guān)系是有方向性的。關(guān)系的方向性意思是:“包括”這個(gè)關(guān)系,是書包括章節(jié),而不是章節(jié)包括書。來(lái)自:百科按需付費(fèi):DWS按實(shí)際使用量和使用時(shí)長(zhǎng)計(jì)費(fèi)。您需要支付的費(fèi)率很低,只需為實(shí)際消耗的資源付費(fèi)。 門檻低:您無(wú)需前期投入較多固定成本,可以從低規(guī)格的 數(shù)據(jù)倉(cāng)庫(kù) 實(shí)例起步,以后隨時(shí)根據(jù)業(yè)務(wù)情況彈性伸縮所需資源,按需開(kāi)支。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來(lái)自:百科云知識(shí) 物理備份和邏輯備份的區(qū)別有哪些 物理備份和邏輯備份的區(qū)別有哪些 時(shí)間:2021-07-01 14:36:56 數(shù)據(jù)庫(kù)管理 數(shù)據(jù)庫(kù) 數(shù)據(jù)備份與恢復(fù) 數(shù)據(jù)庫(kù)備份 物理備份:直接備份數(shù)據(jù)庫(kù)所對(duì)應(yīng)的數(shù)據(jù)文件甚至是整個(gè)磁盤。 邏輯備份:將數(shù)據(jù)從數(shù)據(jù)庫(kù)中導(dǎo)出,并將導(dǎo)出的數(shù)據(jù)進(jìn)行存檔備份。來(lái)自:百科大數(shù)據(jù)是人類進(jìn)入互聯(lián)網(wǎng)時(shí)代以來(lái)面臨的一個(gè)巨大問(wèn)題:社會(huì)生產(chǎn)生活產(chǎn)生的數(shù)據(jù)量越來(lái)越大,數(shù)據(jù)種類越來(lái)越多,數(shù)據(jù)產(chǎn)生的速度越來(lái)越快。傳統(tǒng)的數(shù)據(jù)處理技術(shù),比如說(shuō)單機(jī)存儲(chǔ),關(guān)系數(shù)據(jù)庫(kù)已經(jīng)無(wú)法解決這些新的大數(shù)據(jù)問(wèn)題。為解決以上大數(shù)據(jù)處理問(wèn)題,Apache基金會(huì)推出了Hadoop大數(shù)據(jù)處理的開(kāi)源解決方案。Ha來(lái)自:專題隨著IT、信息技術(shù)的發(fā)展和進(jìn)步,數(shù)據(jù)資源已經(jīng)成為企業(yè)的核心資源。整合數(shù)據(jù)資源,構(gòu)建大數(shù)據(jù)平臺(tái),發(fā)現(xiàn)數(shù)據(jù)價(jià)值,成為企業(yè)經(jīng)營(yíng)的新趨勢(shì)和迫切訴求。而如何從海量數(shù)據(jù)中快速挖掘“價(jià)值”,成為助力客戶實(shí)現(xiàn)預(yù)測(cè)性分析的關(guān)鍵要素。 增強(qiáng)型ETL和實(shí)時(shí)BI分析 數(shù)據(jù)倉(cāng)庫(kù)在整個(gè)BI系統(tǒng)中起到了支柱的角色,更是來(lái)自:百科的數(shù)據(jù)是否符合該模型或者假設(shè)。如果該假設(shè)成立,那么在此基礎(chǔ)上再去檢驗(yàn)新的數(shù)據(jù)集或者進(jìn)一步提煉假設(shè)的模型,讓其更接近最終的分析結(jié)果。探索式數(shù)據(jù)分析是一個(gè)對(duì)假設(shè)的結(jié)果進(jìn)行驗(yàn)證和收斂的過(guò)程。探索式數(shù)據(jù)處理被廣泛地應(yīng)用在金融,保險(xiǎn),互聯(lián)網(wǎng),社科,醫(yī)療,制藥等行業(yè),是數(shù)據(jù)科學(xué)家和工程師的好幫手。來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)架構(gòu):星型模型和雪花模型的選擇
- 關(guān)系數(shù)據(jù)模型與關(guān)系運(yùn)算(一)
- 使用Python實(shí)現(xiàn)邏輯回歸模型
- 【機(jī)器學(xué)習(xí)基礎(chǔ)】邏輯回歸模型
- 數(shù)據(jù)庫(kù)中的實(shí)體關(guān)系模型整理
- 數(shù)據(jù)倉(cāng)庫(kù)中數(shù)據(jù)模型以及ETL算法
- AI領(lǐng)域各個(gè)技術(shù)與大模型之間的關(guān)系
- 先驗(yàn)概率、后驗(yàn)概率、似然函數(shù)與機(jī)器學(xué)習(xí)中概率模型(如邏輯回歸、樸素貝葉斯)的關(guān)系理解
- 性能基礎(chǔ)之CPU、物理核、邏輯核概念與關(guān)系
- 《因果關(guān)系的精準(zhǔn)捕捉術(shù):注意力機(jī)制的深層解碼邏輯》
- 華為云數(shù)據(jù)湖探索服務(wù) DLI
- 盤古多模態(tài)大模型
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- ModelArts Studio大模型開(kāi)發(fā)平臺(tái)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- CV大模型
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門
- 盤古NLP大模型
- 云數(shù)據(jù)庫(kù)GeminiDB
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能