- hadoop中構(gòu)建數(shù)據(jù)倉庫的特點(diǎn) 內(nèi)容精選 換一換
-
Hive是建立在Hadoop上的 數(shù)據(jù)倉庫 基礎(chǔ)構(gòu)架。它提供了一系列的工具,可以用來進(jìn)行數(shù)據(jù)提取轉(zhuǎn)化加載(ETL),這是一種可以存儲(chǔ)、查詢和分析存儲(chǔ)在Hadoop中的大規(guī)模數(shù)據(jù)的機(jī)制。Hive定義了簡(jiǎn)單的類SQL查詢語言,稱為HiveQL,它允許熟悉SQL的用戶查詢數(shù)據(jù)。Hive的數(shù)據(jù)計(jì)算依來自:百科2.高擴(kuò)展性:Hadoop是在可用的計(jì)算機(jī)集簇間分配數(shù)據(jù)并完成計(jì)算任務(wù)的,這些集簇可以方便地?cái)U(kuò)展到數(shù)以千計(jì)的節(jié)點(diǎn)中。 3.高效性:Hadoop能夠在節(jié)點(diǎn)之間動(dòng)態(tài)地移動(dòng)數(shù)據(jù),并保證各個(gè)節(jié)點(diǎn)的動(dòng)態(tài)平衡,因此處理速度非???。 4.高容錯(cuò)性:Hadoop能夠自動(dòng)保存數(shù)據(jù)的多個(gè)副本,并且能夠自動(dòng)將失敗的任務(wù)重新分配。來自:百科
- hadoop中構(gòu)建數(shù)據(jù)倉庫的特點(diǎn) 相關(guān)內(nèi)容
-
MRS 基于開源軟件Hadoop進(jìn)行功能增強(qiáng)、Spark內(nèi)存計(jì)算引擎、HBase分布式存儲(chǔ)數(shù)據(jù)庫以及Hive數(shù)據(jù)倉庫框架,提供企業(yè)級(jí)大數(shù)據(jù)存儲(chǔ)、查詢和分析的統(tǒng)一平臺(tái),幫助企業(yè)快速構(gòu)建海量數(shù)據(jù)信息處理系統(tǒng),可解決各大企業(yè)的以下需求: 海量數(shù)據(jù)的分析與計(jì)算 海量數(shù)據(jù)的存儲(chǔ) 海量數(shù)據(jù)流式處理來自:百科le和Teradata的處理。應(yīng)用只需做少量改動(dòng)即可向DWS平滑遷移。 接口 支持應(yīng)用程序通過標(biāo)準(zhǔn)JDBC 4.0和ODBC 3.5連接DWS。 DWS(MPP大規(guī)模并行處理集群) 一個(gè)DWS集群由多個(gè)在相同子網(wǎng)中的相同規(guī)格的節(jié)點(diǎn)組成,共同提供服務(wù)。集群的每個(gè)DN負(fù)責(zé)存儲(chǔ)數(shù)據(jù),其來自:百科
- hadoop中構(gòu)建數(shù)據(jù)倉庫的特點(diǎn) 更多內(nèi)容
-
數(shù)據(jù)模型是數(shù)據(jù)庫系統(tǒng)的核心和基礎(chǔ),所以數(shù)據(jù)庫系統(tǒng)的發(fā)展和數(shù)據(jù)模型的發(fā)展密不可分,數(shù)據(jù)庫模型的劃分維度是數(shù)據(jù)庫系統(tǒng)劃分的一個(gè)重要標(biāo)準(zhǔn)。 2、與其它計(jì)算機(jī)技術(shù)交叉結(jié)合。 其他計(jì)算機(jī)新技術(shù)層出不窮,數(shù)據(jù)庫和其他計(jì)算機(jī)技術(shù)交叉結(jié)合,是數(shù)據(jù)庫技術(shù)的一個(gè)顯著特征。 3、面向應(yīng)用領(lǐng)域發(fā)展數(shù)據(jù)庫新技術(shù)。來自:百科
在結(jié)構(gòu)化的數(shù)據(jù)表里。數(shù)據(jù)表之間相互關(guān)聯(lián),反映客觀事物間的本質(zhì)聯(lián)系。數(shù)據(jù)庫能有效地幫助一個(gè)組織或企業(yè)科學(xué)地管理各類信息資源。 數(shù)據(jù)倉庫和數(shù)據(jù)庫的主要區(qū)別: 1、數(shù)據(jù)庫是面向事務(wù)的設(shè)計(jì),數(shù)據(jù)倉庫是面向主題設(shè)計(jì)的。 2、數(shù)據(jù)庫一般存儲(chǔ)在線交易數(shù)據(jù),數(shù)據(jù)倉庫存儲(chǔ)的一般是歷史數(shù)據(jù)。 3、數(shù)來自:百科
ata的SQL語法進(jìn)行了兼容性增強(qiáng),在很多場(chǎng)合都可以替代國外同類型產(chǎn)品。我們的數(shù)據(jù)倉庫服務(wù)工程師重點(diǎn)設(shè)計(jì)實(shí)現(xiàn)了基于行列混存的數(shù)據(jù)倉庫內(nèi)核,在支持海量數(shù)據(jù)快速分析的同時(shí)也很好地兼顧了業(yè)務(wù)運(yùn)作系統(tǒng)對(duì)數(shù)據(jù)增刪改的需求。引入了自研的基于代價(jià)的查詢優(yōu)化器,以及當(dāng)前數(shù)據(jù)倉庫系統(tǒng)所流行的一些黑來自:百科
已連續(xù)兩年入選Gartner發(fā)布的 數(shù)據(jù)管理 解決方案魔力象限,相比傳統(tǒng)數(shù)據(jù)倉庫,性價(jià)比提升數(shù)倍,具備大規(guī)模擴(kuò)展能力和企業(yè)級(jí)可靠性。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將來自:百科
另一方面如果鎖住了多張表,又會(huì)阻擋數(shù)據(jù)庫表單更新的事務(wù),造成業(yè)務(wù)的延時(shí)甚至中斷。 解決方案 數(shù)據(jù)倉庫主要適用于企業(yè)數(shù)據(jù)的關(guān)聯(lián)和聚合等分析場(chǎng)景,并從中發(fā)掘出數(shù)據(jù)背后的商業(yè)情報(bào)供決策者參考。這里的數(shù)據(jù)發(fā)掘主要指涉及多張表的大范圍的數(shù)據(jù)聚合和關(guān)聯(lián)的復(fù)雜查詢。 使用數(shù)據(jù)倉庫,通過某個(gè)數(shù)據(jù)轉(zhuǎn)換(ETL)的過程,業(yè)務(wù)運(yùn)營(yíng)數(shù)來自:百科
華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開發(fā)者,致力于讓云無處不在,讓智能無所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊(cè)一元域名華為 云桌面 [來自:百科
- 數(shù)據(jù)倉庫(01)什么是數(shù)據(jù)倉庫,數(shù)倉有什么特點(diǎn)
- 使用 Hive 構(gòu)建數(shù)據(jù)倉庫
- 【Hadoop】【Yarn】Hadoop中ShutdownHook的使用
- 分布式計(jì)算Hadoop系列之如何Eclipse中構(gòu)建Hadoop項(xiàng)目
- hadoop基礎(chǔ)二:HDFS的特點(diǎn)、三個(gè)服務(wù)、架構(gòu)
- GaussDB(DWS)構(gòu)建實(shí)時(shí)數(shù)據(jù)倉庫的最佳實(shí)踐
- 我眼中的Hive-你眼中的了?
- 深度解析之Hive原理
- 大數(shù)據(jù)新視界 --大數(shù)據(jù)大廠之Hive與大數(shù)據(jù)融合:構(gòu)建強(qiáng)大數(shù)據(jù)倉庫實(shí)戰(zhàn)指南
- Hadoop數(shù)據(jù)倉庫建設(shè):從原始數(shù)據(jù)到可分析數(shù)據(jù)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)產(chǎn)品架構(gòu)_技術(shù)特點(diǎn)
- 數(shù)據(jù)倉庫服務(wù) DWS
- MapReduce服務(wù)
- GeminiDB Cassandra 接口
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 資源專屬服務(wù)
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源
- 湖倉構(gòu)建