檢測到您已登錄華為云國際站賬號,為了您更好的體驗,建議您訪問國際站服務(wù)網(wǎng)站 http://www.cqfng.cn/intl/zh-cn
不再顯示此消息
的微型硬件無處不在。在這些微型硬件上部署深度學(xué)習(xí)模型將使我們能夠?qū)崿F(xiàn)人工智能的民主化。然而,由于內(nèi)存預(yù)算極其緊張,微型深度學(xué)習(xí)與移動深度學(xué)習(xí)有著根本性的不同:一個常見的MCU通常具有小于512KB的SRAM,這對于部署大多數(shù)現(xiàn)成的深度學(xué)習(xí)網(wǎng)絡(luò)來說太小了。即使對于更強大的硬件如Raspberry
深度學(xué)習(xí)(DL, Deep Learning)是機器學(xué)習(xí)(ML, Machine Learning)領(lǐng)域中一個新的研究方向,它被引入機器學(xué)習(xí)使其更接近于最初的目標(biāo)——人工智能(AI, Artificial Intelligence)。 深度學(xué)習(xí)是學(xué)習(xí)樣本數(shù)據(jù)的內(nèi)在規(guī)律和表示層次,
計算機視覺香港中文大學(xué)的多媒體實驗室是最早應(yīng)用深度學(xué)習(xí)進行計算機視覺研究的華人團隊。在世界級人工智能競賽LFW(大規(guī)模人臉識別競賽)上,該實驗室曾力壓FaceBook奪得冠軍,使得人工智能在該領(lǐng)域的識別能力首次超越真人。語音識別微軟研究人員通過與hinton合作,首先將RBM和D
計算機視覺香港中文大學(xué)的多媒體實驗室是最早應(yīng)用深度學(xué)習(xí)進行計算機視覺研究的華人團隊。在世界級人工智能競賽LFW(大規(guī)模人臉識別競賽)上,該實驗室曾力壓FaceBook奪得冠軍,使得人工智能在該領(lǐng)域的識別能力首次超越真人。語音識別微軟研究人員通過與hinton合作,首先將RBM和D
深度學(xué)習(xí)需要大量的數(shù)據(jù)集,但是現(xiàn)實是只有零星的數(shù)據(jù),大家有什么收集數(shù)據(jù)的經(jīng)驗和經(jīng)歷,還有什么收集數(shù)據(jù)的好辦法
JAX是一個似乎同時具備Pytorch和Tensorflow優(yōu)勢的深度學(xué)習(xí)框架。 JAX 是 Google Research 開發(fā)的機器學(xué)習(xí)庫,被稱為“在 GPU/TPU上運行的具有自動微分功能的Numpy”,該庫的核心是類似 Numpy 的向量和矩陣運算。我個人認為,與
1 Mediapipe在人體姿態(tài)提取中的應(yīng)用 Mediapipe使用預(yù)訓(xùn)練的深度學(xué)習(xí)模型來進行人體姿態(tài)提取,常見的模型結(jié)構(gòu)如OpenPose模型。該模型通過對大量人體姿態(tài)圖像數(shù)據(jù)的學(xué)習(xí),構(gòu)建了一個能夠準(zhǔn)確預(yù)測人體關(guān)節(jié)位置的模型。模型的目標(biāo)是檢測人體的多個關(guān)鍵點(如頭部、
runtimeONNX Runtime是一種跨平臺深度學(xué)習(xí)訓(xùn)練和推理機加速器,與深度學(xué)習(xí)框架,可以兼容TensorFlow、Keras和PyTorch等多種深度學(xué)習(xí)框架。ONNX (Open Neural Network Exchange) 是一種用于表示深度學(xué)習(xí)模型的開放格式,ONNX定義了一組
No dashboards are active for the current data set. 特地重新訓(xùn)練了,記下來日志目錄,都是創(chuàng)建TensorBoard還是錯誤,不知道怎么回事,求解
卷積操作就是filter矩陣跟filter覆蓋的圖片局部區(qū)域矩陣對應(yīng)的每個元素相乘后累加求和。
上,在過去的兩年時間里,谷歌已經(jīng)完全將深度學(xué)習(xí)嵌入進了谷歌翻譯中。事實上,這些對語言翻譯知之甚少的深度學(xué)習(xí)研究人員正提出相對簡單的機器學(xué)習(xí)解決方案,來打敗世界上最好的專家語言翻譯系統(tǒng)。文本翻譯可以在沒有序列預(yù)處理的情況下進行,它允許算法學(xué)習(xí)文字與指向語言之間的關(guān)系。谷歌翻譯利用的
反,我們正在走向一個人工智能嵌入式世界。智能冰箱可以自動點菜,無人機可以自動導(dǎo)航整個城市。強大的機器學(xué)習(xí)方法應(yīng)該能夠下載到個人電腦、手機和小型芯片上。這需要輕量級人工智能:使神經(jīng)網(wǎng)絡(luò)更小,同時保持性能。這直接或間接地表明,在深度學(xué)習(xí)的研究中,幾乎所有的事情都與減少必要的參數(shù)有關(guān),
深度學(xué)習(xí)區(qū)別于傳統(tǒng)的淺層學(xué)習(xí),深度學(xué)習(xí)的不同在于: (1)強調(diào)了模型結(jié)構(gòu)的深度,通常有5層、6層,甚至10多層的隱層節(jié)點;(2)明確了特征學(xué)習(xí)的重要性。也就是說,通過逐層特征變換,將樣本在原空間的特征表示變換到一個新特征空間,從而使分類或預(yù)測更容易。與人工規(guī)則構(gòu)造特征的方法相比,
深度神經(jīng)網(wǎng)絡(luò):深度學(xué)習(xí)的模型有很多,目前開發(fā)者最常用的深度學(xué)習(xí)模型與架構(gòu)包括卷積神經(jīng)網(wǎng)絡(luò) (CNN)、深度置信網(wǎng)絡(luò) (DBN)、受限玻爾茲曼機 (RBM)、遞歸神經(jīng)網(wǎng)絡(luò) (RNN & LSTM & GRU)、遞歸張量神經(jīng)網(wǎng)絡(luò) (RNTN)、自動編碼器 (AutoEncoder)、生成對抗網(wǎng)絡(luò)
科技公司通過基于GAN的深度學(xué)習(xí)開發(fā)了一種名為“自動全身模型生成人工智能”的技術(shù),他們完全是由人工智能虛擬而成,時尚品牌或廣告代理商因而可以不用支付模特酬勞,也不用負擔(dān)拍攝相關(guān)的人員、場地、燈光、設(shè)備、甚至是餐飲等成本,這意味著人工智能已經(jīng)完全可以取代人類模特拍攝時尚宣傳廣告了。
TensorFlow是一個基于數(shù)據(jù)流編程(dataflow programming)的符號數(shù)學(xué)系統(tǒng),被廣泛應(yīng)用于各類機器學(xué)習(xí)(machine learning)算法的編程實現(xiàn),其前身是谷歌的神經(jīng)網(wǎng)絡(luò)算法庫DistBelief 。Tensorflow擁有多層級結(jié)構(gòu),可部
長短期記憶(Long short-term memory, LSTM)是一種特殊的RNN,主要是為了解決長序列訓(xùn)練過程中的梯度消失和梯度爆炸問題。簡單來說,就是相比普通的RNN,LSTM能夠在更長的序列中有更好的表現(xiàn)。
些端云聯(lián)合學(xué)習(xí)方法和框架被提出來,旨在聯(lián)合多個端側(cè)設(shè)備共同訓(xùn)練一個全局模型,并實現(xiàn)端側(cè)隱私保護。Google率先于2016年提出了聯(lián)邦學(xué)習(xí)方法和框架。楊強等又提出了橫向聯(lián)邦學(xué)習(xí)、縱向聯(lián)邦學(xué)習(xí)、聯(lián)邦遷移學(xué)習(xí)以及聯(lián)邦強化學(xué)習(xí)等方法及對應(yīng)的框架。端側(cè)推理、遷移學(xué)習(xí)和聯(lián)邦學(xué)習(xí)屬于端云協(xié)同
? 完整訓(xùn)練流程:提供完整訓(xùn)練代碼、預(yù)設(shè)參數(shù)和可復(fù)用數(shù)據(jù)集; ? 可部署模型格式:支持.pt和ONNX格式,便于后續(xù)部署到邊緣設(shè)備或服務(wù)端。 數(shù)據(jù)集 本項目使用的裂縫識別數(shù)據(jù)集采用標(biāo)準(zhǔn)的 YOLO 格式,便于快速訓(xùn)練與遷移學(xué)習(xí)。 ? 數(shù)據(jù)集結(jié)構(gòu)如下: kotlin 復(fù)制 編輯 dataset/
Dropout的另一個重要方面是噪聲是乘性的。如果是固定規(guī)模的加性噪聲,那么加了噪聲 ? 的整流線性隱藏單元可以簡單地學(xué)會使 hi 變得很大(使增加的噪聲 ? 變得不顯著)。乘性噪聲不允許這樣病態(tài)地解決噪聲魯棒性問題。另一種深度學(xué)習(xí)算法——批標(biāo)準(zhǔn)化,在訓(xùn)練時向隱藏單元引入加性和乘性噪聲重新參數(shù)化模型。批標(biāo)準(zhǔn)化