- 基于深度學(xué)習(xí)的密集人群密度檢測(cè) 內(nèi)容精選 換一換
-
10余年來,北京博思廷科技有限公司深耕于安防行業(yè),致力于以人工智能圖像檢測(cè)技術(shù)為核心的智能視頻軟硬件產(chǎn)品的研發(fā)和產(chǎn)業(yè)化整合,將智能視頻處理技術(shù)、大數(shù)據(jù)、云計(jì)算等多種高新技術(shù)綜合應(yīng)用于智能安防、智能交通、智能消防、智能運(yùn)維管理等多個(gè)領(lǐng)域,是國(guó)內(nèi)領(lǐng)先的具有自主知識(shí)產(chǎn)權(quán)的智能視頻算法及產(chǎn)品研發(fā)生產(chǎn)服務(wù)廠商和解決方案提供商。來自:云商店來自:百科
- 基于深度學(xué)習(xí)的密集人群密度檢測(cè) 相關(guān)內(nèi)容
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、語音識(shí)別、自然語言處理等其他領(lǐng)域。來自:百科有效避免安全事故的發(fā)生。 該功能需配套支持人群密度的攝像機(jī):SIU款型或Dxxxx-10款型。 配置人群密度 右鍵單擊屏幕,進(jìn)入主菜單,選擇“智能>智能配置>態(tài)勢(shì)分析>人群密度”,打開“啟用人群密度”開關(guān),繪制檢測(cè)區(qū)域。 結(jié)果驗(yàn)證 實(shí)況畫面右上角會(huì)顯示當(dāng)前人群密度占比和當(dāng)前人數(shù)。來自:云商店
- 基于深度學(xué)習(xí)的密集人群密度檢測(cè) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過人工神經(jīng)網(wǎng)絡(luò)來提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
車的位置。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過實(shí)操最終得到AI成功識(shí)別人車的結(jié)果。 實(shí)驗(yàn)摘要 1.準(zhǔn)備環(huán)境 2.創(chuàng)建 OBS 桶和目錄 3.拷貝數(shù)據(jù)集到OBS桶 4.創(chuàng)建訓(xùn)練作業(yè) 5.模型導(dǎo)入 6.模型部署 7.發(fā)起檢測(cè) 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵來自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科
AI開發(fā)者(技能開發(fā)者) AI開發(fā)者一般是從事AI開發(fā)的技術(shù)人員或高校學(xué)生等群體,這些用戶想開發(fā)具備AI能力的技能,并且可以方便地部署到設(shè)備實(shí)時(shí)查看技能的運(yùn)行效果,從中獲取一定的收入或知識(shí)。這些用戶可以在 HiLens 管理控制臺(tái)進(jìn)行AI技能的開發(fā)。HiLens在端側(cè)集成了HiLens Framework框來自:百科
- 基于深度學(xué)習(xí)的小目標(biāo)檢測(cè)
- 基于深度學(xué)習(xí)的日志數(shù)據(jù)異常檢測(cè)
- 【Python算法】基于密度的離群點(diǎn)檢測(cè)方法
- 【AI理論】中科院提出人群密度檢測(cè)算法DSNet,準(zhǔn)確率提升30%
- 在小藤上實(shí)現(xiàn)無人機(jī)人群密度估計(jì)
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的美食檢測(cè)系統(tǒng)matlab仿真
- 基于深度學(xué)習(xí)的路面裂縫檢測(cè)算法matlab仿真
- 基于深度學(xué)習(xí)的油井異常檢測(cè)與預(yù)警系統(tǒng)
- 基于YOLOv10深度學(xué)習(xí)的草坪雜草檢測(cè)系統(tǒng)
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的煙霧檢測(cè)算法matlab仿真